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Abstract—As an infrastructure for data persistence and analy-
sis, Database Management Systems (DBMSs) are the cornerstones
of modern enterprise software. To improve their correctness,
the industry has been applying blackbox fuzzing for decades.
Recently, the research community achieved impressive fuzzing
gains using coverage guidance. However, due to the complexity
and distributed nature of enterprise-level DBMSs, seldom are
these researches applied to the industry.

In this paper, we apply coverage-guided fuzzing to enterprise-
level DBMSs from Huawei and Bloomberg LP. In our practice of
testing GaussDB and Comdb2, we found major challenges in all
three testing stages. The challenges are collecting precise cover-
age, optimizing fuzzing performance, and analyzing root causes.
In search of a general method to overcome these challenges,
we propose RATEL, a coverage-guided fuzzer for enterprise-level
DBMSs. With its industry-oriented design, RATEL improves the
feedback precision, enhances the robustness of input generation,
and performs an on-line investigation on the root cause of bugs.
As a result, RATEL outperformed other fuzzers in terms of
coverage and bugs. Compared to industrial black box fuzzers
SQLsmith and SQLancer, as well as coverage-guided academic
fuzzer Squirrel, RATEL covered 38.38%, 106.14 %, 583.05% more
basic blocks than the best results of other three fuzzers in
GaussDB, PostgreSQL, and Comdb2, respectively. More impor-
tantly, RATEL has discovered 32, 42, and 5 unknown bugs in
GaussDB, Comdb2, and PostgreSQL.

Index Terms—DBMS testing, coverage-guided fuzzing, enter-
prise DBMS

I. INTRODUCTION

As an infrastructure for data persistence and analysis,
Database Management Systems (DBMSs) are widely applied
in the modern software stack, especially enterprise software. In
recent years, their reliability and security have gained traction
in academic research as well as in industry.

To improve the correctness of DBMSs, the industry has been
applying blackbox fuzzing for decades. Basically, to perform
fuzz testing, a fuzzer generates a number of random inputs and
sends them to the target system for execution. If anomalies
such as crashes, timeouts, internal errors, or incorrect results
are detected, then the triggering input is saved. Developers can
use the input to reproduce the anomaly, investigate the root
cause, and fix the bug. For example, SQLsmith [1] triggers
system bugs by continuously generating random SQL queries;
RAGS [2] detects logic bugs by comparing the results of a
query on multiple DBMSs; SQLancer [3] detects logic bugs
by constructing an invariant oracle from different angles [4],
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[5]. The effectiveness of blackbox fuzzing has been proven by
many previously-unknown bugs from the industry’s practice:
more than 100 bugs were found by SQLsmith, and more than
400 bugs were found by SQLancer.

Recently, coverage-guided fuzzing has become a hot topic
in the research community, and impressive gains over the
conventional blackbox fuzzing methods are observed [6], [7].
Coverage-guided fuzzing introduces feedback into the fuzzing
loop: more than blindly generating random inputs, a coverage-
guided fuzzer collects the execution trace of an input to
recognize interesting inputs triggering new program behaviors;
the interesting ones are preserved for further mutations, while
the mundane ones are discarded. For example, Squirrel [8]
combines coverage-based fuzzing and model-based generation.
It performs type-based mutations on intermediate representa-
tions and optimizes for semantic correctness with additional
analysis. Coverage-guided DBMS testing is especially effec-
tive in libraries. For instance, when fuzzing SQLite, Squirrel
achieved 7.7x edge coverage gains over the typical blackbox
fuzzer SQLsmith.

However, the performance of coverage-guided DBMS
fuzzing on libraries does not match with that of enterprise-
level DBMSs. For example, Squirrel discovered 51 new bugs
on SQLite, but it failed to discover any bugs on PostgreSQL.
This is counter-intuitive: SQLite is released as one source
file and has around 750 bugs [9]; while for PostgreSQL,
a distributed system with millions of lines of code, its bug
ID has already exceeded 16,500 [10]. Different from library-
level DBMSs, enterprise-level DBMSs are much more difficult
to test due to extra complexity and distributed nature. For
example, GaussDB, Huawei’s proprietary DBMS, extends
PostgreSQL with enterprise-level features such as advanced
high-availability and geo-based sharing. This is implemented
with six distributed components in over 10 million lines of
code. Therefore, no bugs were discovered when we primitively
applied fuzzing to GaussDB.

In our practice, the gap can be divided into three aspects.
First, the coverage collected by conventional fuzzers is low in
quality. Commonly, enterprise-level DBMSs execute a diver-
sity of components, and each component contains a number
of basic blocks. Conventional fuzzers experience severe col-
lisions in feedback, or cannot collect coverage from multiple
components at all. Next, the SQL generated by existing fuzzers
cannot be accepted by enterprise-level DBMSs. Generative
fuzzers can produce SQL statements, but the generated inputs



are neither correct nor complete, given the diverse syntax of
enterprise-level DBMSs. Even if a fuzzer can trigger a bug,
the root cause analysis is still a tough task — enterprise-
level DBMSs’ contextual dependencies are difficult to model,
especially given a sequence of random inputs generated with
non-deterministic mutation algorithms.

In this paper, we first present the challenges we faced in our
practice, and then propose general solutions for them. After
resolving the challenges, we implement RATEL, a coverage-
guided fuzzer targeted at real enterprise-level DBMSs in the
industry. RATEL tackles three major challenges in existing
DBMS fuzzing techniques: 1) improve the feedback precision
on large-scale distributed systems with inter-binary coverage
linkage and bijective block mapping; 2) enhance SQL gener-
ation with robustness-oriented strategy; 3) investigate the root
cause of anomalies with on-line analysis and deduplication.

We implemented RATEL in Rust, C, and C++. The main
fuzzer is implemented in Rust using the tokio asynchronous
framework and the input generation by Rui et al. [8]. For
precise instrumentation, we also implemented the compiler
part based on LLVM [11] with additional passes and pipeline
tweaks. We use RATEL to test GaussDB continuously and
discovered 32 previously-unknown bugs in GaussDB. For
proper evaluation, we further extended our evaluation with
Bloomberg LP’s distributed DBMS Comdb2 and the original
PostgreSQL where GaussDB derived. We also discovered
42 bugs of Comdb2 and 5 bugs of PostgreSQL from their
codebases.

To summarize, our main contributions are as follows:

o We adapt several fuzzers to enterprise-level DBMSs and
identify three challenges encountered in our practice to
fuzz DBMSs. The challenges are imprecise coverage
collection on distributed systems, fragile input generation
of complex SQL dialects, and unreproducible bug reports
on stateful systems.

e We propose RATEL to solve the challenges as a general
solution for coverage-guided fuzzing on enterprise-level
DBMSs. We improve the feedback precision, enhance
the robustness of input generation, and perform on-line
investigation on the root cause of bugs.

e The final results show that RATEL effectively im-
proved existing DBMS fuzzing works on enterprise-
level DBMSs. Compared to SQLsmith, SQLancer, and
Squirrel, it covered 38.38%, 106.14%, 583.05% more
basic blocks than the best results of other three fuzzers in
GaussDB, PostgreSQL, and Comdb2, respectively. More
importantly, 79 unknown bugs are discovered by it.

II. BACKGROUND

In this section, we first give a brief introduction to DBMS
and give an example to illustrate the complexity of enterprise-
level DBMSs. Then, we introduce some existing solutions of
DBMS fuzzing. Finally, we detail three state-of-the-art fuzzers,
i.e. SQLsmith, SQLancer, and Squirrel, which are chosen for
our industry practice.

A. Database Management System (DBMS)
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Fig. 1. Interactions between different processes/threads in GaussDB.

Database management system (DBMS) is the software that
interacts with end users and applications. Different from
libraries and utilities, most DBMSs are large and complex
distributed systems. They generally contain hundreds of com-
ponents, within which complex interactions reside during
runtime. Fig. 1 gives a high-level overview of interactions
on a classic database cluster setup of GaussDB [12], [13].
The server listens on a socket to accept queries from clients.
Upon receiving queries, it parses them by Query Engine, and
searches results from Storage Engine. For replication, Master
Node sends replicated modifications to Standby Nodes. Master
node starts WALsender to perform replication, and multiple
standby nodes start WALreceiver to receive write-ahead
logs (WAL) from Master Node and maintain their RedoLog
states. Meanwhile, the backend process is spawned periodi-
cally for certain purposes, e.g. Vacuum for garbage analysis
and collection, Checkpoint for transaction log persistence.
From the interactions of GaussDB, it can be seen that there
are many kind of processes interweaving with main process
in enterprise-level DBMSs, some of which are even deployed
on different hosts for high-availability and scalability.

B. Fuzzing DBMSs

Due to the complexity and distributed nature of DBMS,
ensuring its reliability and security is difficult. Therefore, many
DBMS fuzzers have sprung up in the past years and tried
to find bugs in different aspects. Generally, two approaches
were taken by them, i.e. blackbox fuzzing and coverage-guided
fuzzing.

Blackbox DBMS fuzzing focuses on rapidly constructing a
large amount of valid and effective data to pass to the DBMS
without the knowledge of the DBMS’s source code. For
instance, SQLsmith [1] continuously generates syntactically-
correct SQL statements and passes them to the DBMS, mean-
while detects whether the DBMS triggers crashes. In addition,
SQLancer [3] integrates three different strategies [4], [5], [14]
to construct invirant oracle to detect logic bugs. For example,



its pivoted query synthesis strategy [5] generates queries of
which corresponding result table is supposed to include a
specific row, and if the DBMS fails to fetch the row, a logic
bug is discovered. Additionally, some research works [2], [15]
leverage differential testing to detect abnormal behavior in
DBMSs. RAGS [2] generates and executes queries in multiple
DBMSs, meanwhile compares the results of a query on those
DBMSs; similar to RAGS, APPOLO [15] generates queries
guided by performance difference and compares the results of
a query on different versions of the same DBMS. All these
blackbox DBMS fuzzers have shown good performance on bug
discovery in the industry’s practice. For example, SQLsmith
has found 118 bugs in the past five years [16], SQLancer has
found over 400 bugs in the past two years [17].

While blackbox fuzzing for DBMSs has gained popularity,
coverage-guided fuzzing is hardly applied in the industry.
To increase code coverage, coverage-guided fuzzing leverages
instrumentation or even program analysis techniques; some-
times, directed fuzzing can also be used to reach certain critical
program locations. Traditional coverage-guided fuzzers, like
AFL [18], libFuzzer [19] and Honggfuzz [20], can be easily
applied to DBMS libraries such as SQLite. These fuzzers use
mutation-based input generation techniques, and the generated
inputs are very unlikely to be syntactically correct. To generate
inputs without being blocked by shallow syntax checks, users
usually use a customized SQL dictionary. During the mutation
stage, fuzzers will randomly replace a part of the generated
input with the given SQL keywords. While symbolic execution
[21], [22] and enhanced mutation [23], [24] improved the
quality of generated inputs, coverage-guided fuzzing are still
blocked by shallow checks in most cases. Recently, Squir-
rel [8] has been proposed to combine model-based generation
and coverage-guided fuzzing for DBMS. It is built on top
of AFL just like other fuzzers. The different part is the use
of Bison and Flex for parsing the original SQL statements
provided by the user into intermediate representations. By
using intermediate representation instead of a plain buffer of
bytes, the structural information of the SQL statements are
preserved, and further syntactically correct mutations can be
performed. Over 60 bugs were discovered by Squirrel.

C. Fuzzers Chosen by This Paper

To improve the correctness of GaussDB, we try to perform
fuzzing on typical fuzzers, including both the blackbox and
coverage-guided ones. As shown above, many DBMS fuzzers
were proposed, and their performance seems to be attractive.
However, after analyzing lots of trails and errors, we found that
only a few of them can be applied practically for bug hunting.
For example, RAGS is not open-source and APPOLO requires
a certain version of DBMS and the adaption cost is great. After
considering the investments and the possible returns, we chose
three fuzzers as our target in our experiment. Table I shows the
characteristics of these fuzzers. We summarize their features
as follow:

o SQLsmith is a random SQL query generator. It detects
bugs by checking whether the connection to server is

closed. It is easy to adapt to a new DBMS because it
only needs to connect to target SQL server.

o SQLancer is a fuzzer for hunting logic bugs in DBMS.
It detects logic bugs by constructing invariant oracle [4],
[5], [14] and checking whether results violate semantic
logic. Adapting it to a new DBMS may take some time
because new logic assertion and syntax generation should
be implemented.

o Squirrel is a fuzzer aiming at finding memory corruption
issues in DBMS. It detects memory corruption in a way
similar to SQLsmith, i.e. checking whether the connection
to server is closed. Adapting it to a new DBMS may take
many manual efforts because it requires customizing AST
parser, writing grammar rules, and implementing client
logic under its framework.

TABLE I
FEATURES OF CHOSEN FUZZERS

Fuzzer SQLsmith  SQLancer  Squirrel
Syntax Validity vV Vv 4
Semantic Validity X Vv Vv
Logic Check X Vv X
Coverage-Guided X X

Adaption Difficulty Easy Medium Hard

III. How TO Fuzz DATABASE

Different DBMSs have different properties, but the pro-
cedures to fuzz them with coverage guidance are roughly
similar. The steps can be summarized as Fig. 2. First, to
collect coverage on executions, the fuzz target should be
built into instrumented binaries. Next, to generate correct
SQL statements, the high-quality initial corpus is collected for
further mutations. During the process, crash-triggering inputs
are saved for further inspection. Finally, to analyze the root
causes, the abnormal inputs are resubmitted to the binaries to
reproduce the bug and create bug reports manually.
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Fig. 2. Steps of enterprise-level DBMS testing with coverage guidance.

a) Building Fuzz Targets: As a dynamic testing method,
fuzzing requires running the target system with proper instru-
mentation. Therefore, the first step of fuzzing is building the
target project with the source code and the driver.



A test driver is the entrance of fuzz testing, which feeds
inputs to the target system. Fuzzers such as SQLsmith and
Squirrel embed the query logic into themselves. Fuzzers aim-
ing at improving the generality can use the common interface
to send queries, such as JDBC and ODBC.

In addition to building the driver, we also need to compile
the source code to generate binary files. For blackbox fuzzers,
general-purpose compilers such as gcc or clang can be used.
We enable optimizations for better performance and enable
sanitizers for enhanced bug-detection ability. For coverage-
guided fuzzers, they are required to collect feedback from
program executions. One popular method is the compile-
time instrumentation. For example, when building the target
program for Squirrel’s use, we run configuration scripts with
CC and CXX pointed to afl-gcc and afl-clang++. These
tools hijack the execution of the default compiler, and inserts
a constant-sized counter region to log the program’s execution
trace. On the entrance of each basic block, an additional
logging code is executed, which increments the corresponding
counter according to the transition of basic blocks.

b) Generate SQL Queries: Automatically-generated
SQL queries can cover complex and corner cases, which
reveal bugs beyond simple unit tests or hand-written tests.
There are two mainstream methods to generate SQL queries
automatically. 1) Buffer-based mutation, where SQL state-
ments are treated as a plain buffer of bytes. This method
randomly changes components of the byte buffer with sub-
stitution, deletion, and insertion; sometimes, multiple buffers
are spliced together. The buffer-based mutation is relatively
simple to implement and can automatically generate a large
number of SQL, but most of the generated SQL statements
are syntactically invalid. 2) Syntax-based mutation. Instead
of simply mutating on the byte level, this method constructs
SQL statements by building abstract syntax trees (AST).
This method relies on corpora of partially constructed SQL
statements in the form of ASTs, covering different types of
SQL syntax. To generate SQL statements, the original SQL
statements are first parsed into ASTs. Next, transformations
such as splicing and deletion are performed on the nodes
of the ASTs. Finally, the transformed ASTs are serialized
into SQL statements. Although this type of generation cannot
ensure the correctness of semantics, the generated inputs are
syntactically-correct at least. Consequently, early rejections at
parsers are avoided, and deeper logic in the target system
can be exercised. Many tools are implemented following this
method, including SQLsmith, SQLancer, and Squirrel.

c) Analyze Root Causes: When executing randomly-
generated SQL statements, unexpected behaviors indicating
bugs may occur. To analyze root causes and fix the bug, A
fuzzer must contain a test oracle to detect execution anomalies,
or the bug-triggering input may be discarded. Additionally, the
related context must be collected too, or the bug will be hard
to reproduce and analyze.

For fuzzers targeted at different types of bugs, different
types of anomalies may be monitored, and the context infor-
mation to record also differs. According to the way of finding

bugs and monitoring anomalies, we can roughly divide the
fuzzing tools into two categories. To detect semantic bugs,
tools such as SQLancer implement a test oracle by verifying
the returned values. If the results are unexpected, the original
query and description of mismatched semantics are logged
for further inspection. To detect implementation bugs, tools
such as Squirrel looks for crashes and then record the input
triggering them.

Although these tools are targeted at different types of
bugs, they all monitor for execution anomalies which provide
valuable context for pinpointing the culprits. After discovering
the anomalies, developers should analyze and classify the
anomalies to find root causes. Sometimes, the bug can be
reproduced with the anomaly-triggering input for a better
understanding of the situation.

IV. CHALLENGES AND SOLUTIONS

As Section II-C lists, we chose the most popular DBMS
testing tools, i.e. SQLsmith, SQLancer, and Squirrel to test
enterprise-level DBMSs. Despite their wide usage in real-
world projects, we still faced considerable challenges when
using the coverage-guided fuzzer on enterprise-level DBMSs.
As summarized in Fig. 3, in the following, we present the
details of challenges as well as the solutions in each step.

A. Imprecise Coverage Collection

Compared to well-tested library-based DBMSs, the intro-
duction of enterprise-level features in industrial DBMSs leads
to extra logic, and inevitably, more components. For example,
each node of GaussDB can support at most 8,000 concurrent
connections. To support business on large scale, GaussDB
implements clustered data nodes for storage and computation,
and two to four additional controller nodes are introduced to
coordinate them. This simplified version is implemented with
a code of 466K basic blocks, not to mention deployments
real-life deployments with components for high-availability,
monitoring, and management.

Such a complex system poses challenges for fuzzers in
terms of efficiency. While blackbox fuzzers are robust against
such a complex system, their efficiency is quite limited. When
running blackbox fuzzers on DBMSs, we find new code
coverage takes many executions to discover. Take SQLsmith as
an example, although the number of covered number of basic
blocks grew continuously, the growth is extraordinarily slow
compared to coverage-guided methods. We observed similar
results on SQLancer.

Coverage-guided fuzzer Squirrel improves efficiency by
discovering the interesting inputs and assigning more power
to mutate them. Compared to blackbox fuzzers, the efficiency
of Squirrel is greatly improved, but only for a short time: the
coverage of Squirrel quickly reached a plateau. By collecting
the number of covered basic blocks over time, we found that a
bottleneck is reached soon because its newly generated inputs
hardly improve the coverage.

To solve the problem of efficiency and bottleneck, we
investigated the causes behind it. The problem can be mainly
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attributed to the loss of precise coverage feedback collec-
tion. For example, SQLsmith and SQLancer test DBMS with
blackbox methods. In other words, though they can determine
whether executions of SQL statements are normal, they do not
have any coverage feedback. As a result, despite being able
to generate syntactically correct SQL statements, these fuzzers
could only expand the coverage blindly. The SQL statements
generated by the fuzzers are in a narrow-range, which leads
to difficulties in covering new basic blocks or finding bugs in
deep logic.

Squirrel introduces sparse feedback in AFL to guide fuzzing
on DBMSs. It hashes the branch (transitions of basic blocks)
to one position in a 256KB bitmap. However, the coverage
feedback of Squirrel is incomplete and inaccurate. Enterprise-
level DBMSs typically contain multiple processes running on
multiple hosts, while the instrument mechanism of AFL is
designed for testing a single process. As a result, Squirrel can
only collect the coverage of the main process of the DBMS
server, but for other components such as the logic of the client,
it simply discards tracking them. Even if all the components
are tracked, AFL’s branch coverage itself is imperfect due to
the hash collision issue. Despite Squirrel has expanded AFL’s
bitmap from 64KB to 256KB, for GaussDB which has about
466K basic blocks, the number of branches is much larger
than the size of the bitmap. Consequently, the hash collision
is still serious: for the best possible hash assignment scheme,
1.82 basic blocks still share the same counter. The edge-based
counter-mapping also worsens the conflicts compared to basic-
block-based mapping. We can expand the bitmap at the cost
of a greater overhead of scanning the bitmap, yet the reduced
collision is minuscule.

As a result, in order to adapt feedback fuzzing to DBMSs
effectively, recording the code coverage accurately and com-
pletely has become one of the main challenges.

Solution:
Collect precise feedback by inter-binary coverage link-
age and bijective block mapping.

Bijective block mapping ensures accuracy. With a global
view of the target DBMS, the detailed control flow graphs
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Fig. 4. Precise coverage collection with inter-binary coverage linkage and
bijective block mapping.

and call graphs maps each basic block to a unique counter.
The counters are placed in the feedback in order, and the hash
collision is consequently eliminated. Because of the one-to-
one matching between the counters and the basic blocks, we
do not introduce the overhead of extra counters like hash-
based mapping schemes. To enrich the block-based coverage,
we identify the critical branch, where the branch’s source has
multiple successors and the branch’s destination has multiple
predecessors, and the critical branch is replaced with a dummy
basic block. This design enhances the accuracy of block-based
coverage without incurring extra runtime penalties.
Inter-binary coverage linkage ensures completeness. As Fig.
4 illustrates, we identify basic block information of each
binary in the target DBMS in a global view. Like linkers which
layout object files in the compilation, inter-binary coverage
linkage collects the list of target binaries, fetches the basic
block information computed at compile-time, and generates a
conflict-free layout to store the coverage among a dynamic
set of processes. Therefore, we guarantee the completeness
by monitoring each active binary and accounting the coverage
for each binary. Consequently, when determining whether an



input is interesting, RATEL will not discard interesting inputs
by mistake.

B. Fragile Input Generation

Most DBMS fuzzers leverage handcrafted AST as an in-
put model to generate a greater proportion of valid inputs.
Especially, Squirrel uses not only handcrafted AST but also
customized semantic rules to ensure semantic validity. These
generation-based methods have shown significant effectiveness
in DBMS bug discovery [8], [17].

However, even with enormous manual efforts in modeling
a new DBMS’s syntax, the model is still fragile due to the
complexity of DBMS. DBMSs generally conform to ISO SQL
standard [25], which contains 16 parts with thousands of
pages and is still in evolution, therefore, constructing an input
model is labor-consuming. Take PostgreSQL as an example:
SQLsmith only targets PostgreSQL’s SELECT statement, and
its grammar model already has 42 elements; SQLancer use
over 8,000 lines of Java code to generate syntactically-correct
test cases; Squirrel uses over 33,000 lines of C++ code to
translate between SQL statement and AST.

Another reason is the diversity of different DBMSs. In
addition to basic database-related functionality, DBMSs of-
ten have their own specific features. For example, despite
being a derived product from PostgreSQL, GaussDB still
has vastly different SQL dialects. As Listing 1 shows, in
terms of CREATE TABLE, GaussDB adds a special field for
choosing its adaptive compression algorithms while shutting
off functionalities of inheriting other tables and using extra
methods. As a result, its proprietary input model is difficult to
transfer to other DBMS.

CREATE [ [ ... ] TABLE [ ... ] table_name ( [
{ column_name data_type _ 1)
[ INHERITS ( parent_table [, ... 1 ) 1]
[ USING method ]

Listing 1. Different SQL dialect when creating a table
(PostgreSQL in yellow, GaussDB in Red)

Solution:
Improve robustness with dictionaries and relaxed syn-
tax checks.

The robustness of syntax-based generation itself can be
improved by relaxing the internal checks. Take Squirrel as
an example, a test case is generated in three passes: first,
the original content is parsed and mutated on AST; next, the
generated AST is dumped as a SQL query; finally, the query
is re-parsed to ensure its validity. Any error in these steps lead
to a failed generation. We take a robustness-oriented design:
to enrich the AST corpus, we collect a part of valid AST from
those interesting test cases, even if they failed to pass syntax
checks as a whole statement.

The robustness can be additionally improved with a cus-
tomized dictionary. For a specific DBMS, customizing a AST
parser to cover all semantic features is labor-consuming and

fragile to trivial errors, while customizing a dictionary to
effectively guide fuzzing is viable — it only needs to collect all
keywords of the SQL dialect. Although mutation-based meth-
ods will generate a number of syntactically-incorrect test cases,
its robustness is still attractive in industrial environments.

C. Unreproducible Bugs

DBMS is a system with rich states. For example, the data
can be placed in different shards in a distributed configuration.
The cache for query can be ready or be invalidated by other
modifications. The statistics of the table could be altered,
leading to different query plans. When the system is in a
different state, even for executing the same SQL statement,
the final execution paths may be vastly different.

Because fuzzing generates a large number of random inputs,
the state of the DBMS is significantly altered after fuzzing.
Although Squirrel and other testing tools have recorded the
specific SQL statement input causing the crash, it is very
difficult to reproduce anomalies through the crash-triggering
inputs. Sometimes, re-running the same sequence of inputs
still cannot reproduce the bug due to the randomness from the
operating system.

One useful tool is core dump, which is a file storing
a program’s state of the working memory, processor state,
memory management information, stack pointer, etc. A core
dump is generated by the operating system when a program
has crashed or terminated abnormally. However, generating a
core dump of an enterprise-level DBMS is time-consuming
(~30s) and space-taking (~500MB) in our cases: enterprise
DBMS is optimized for servers with rich compute resources,
thus the size of state stored in memory is considerable.
Besides, if a bug is discovered, it will be repeatedly triggered
in a short period due to the nature of fuzzing and a large
number core dump files will be written to the file system. The
creation of duplicated core dumps burdens both the server and
the developer.
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Fig. 5. Interaction between the anomaly analyzer and DBMS.

Solution:
Investigate the root cause of anomalies with on-line
triage with feedback-driven deduplication.

We design a new scheme to monitor, duplicate, and analyze
anomalies, as shown in Fig. 5. When a DBMS thread is



spawned, the analyzer will trace all its threads by listening
for signals. Additionally, it also keeps a ring buffer to store
the last output of standard outputs. Once an anomaly is
caught, the monitor will collect the rich context where the
anomaly happens, namely the coverage feedback, stack trace,
and termination log. Then the analyzer will remove duplicated
anomalies based on coverage and stack trace by querying
the set of already-triggered ones. For each unique bug, the
analyzer saves the corresponding input, stack trace, original
coverage, termination log and a customized core dump. In
this way, the root cause of anomalies can be analyzed online
preliminary. For most bugs, developers can fix just with the
report, sometimes with the help of core dump. The dependence
on reproduction is greatly reduced.

V. ANALYSIS OF RESULTS AND BUGS

Based on the above solutions, we implement a DBMS
fuzzer namely RATEL. Our tool mainly consists of three
parts: a precise coverage collector, a robust query generator,
and an online bug analyzer. The precise coverage collector
includes two mechanisms, i.e. inter-binary coverage linkage
and bijective block mapping. It is implemented on LLVM with
2,092 lines of code in C++. The robust query generator is on
the top of Rui et al. [8]. We ported its primitive function of
parsing and generation (parser and src) to Rust, with 736
lines of C++ as glue. We wrote 2,323 lines of Rust for the
overall algorithm. The online bug analyzer leverages ptrace
to monitor behaviors of DBMS’s processes. Once an anomaly
is triggered, the analyzer will collect the program context ( i.e.
on-site stack trace and coverage), check whether the anomaly
is newly-triggered based on the context, and disable core dump
generation if the anomaly is duplicated. We implement the
analyzer with 1,790 lines of code in Rust.

A. Analysis of Results

Aiming at improving the correctness of our production
database GaussDB, we explored various mainstream fuzzing
techniques. As Table I shows, besides RATEL, we used SQL-
smith and SQLancer for grammar-based techniques with and
without semantic checks. We also used the academic mutation-
based fuzzer Squirrel. We further included several projects
for comparison use: PostgreSQL, the original DBMS version
where GaussDB forked from; Comdb2, another enterprise-
level DBMS from Bloomberg LP.

We perform our evaluation on a 64-bit machine with 40
cores (Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz), 128
GiB of RAM, 2 * 7,200 rpm hard disk in RAIDO, and
Linux 5.5.13. All DBMSs were compiled with -02 flags.
We enable sanitizers for enhanced bug-detection ability on
fuzzers. The initial seeds were collected from the built-in
integration tests. We conducted each experiment for 12 hours.
We collected the seeds generated by those fuzzers, and dry-
ran the seeds through our instrumentation to compute their
coverage. Note that due to Comdb2 heavily uses Lua to extend
its SQLite-based SQL dialect, we failed to adapt Squirrel and
SQLsmith to it within a reasonable time. In addition, we

do many engineering efforts to adapt Squirrel to GaussDB.
But after Squirrel covered 229 blocks, the fuzzer crashed
due to its implementation issues. As a result, we skipped the
evaluation of SQLsmith and Squirrel on Comdb2 and Squirrel
on GaussDB.

TABLE II
COVERAGE OF DBMS FOR EACH FUZZER

DBMS \ SQLsmith  SQLancer Squirrel RATEL
GaussDB 50,172 2,513 N/A 69,432
PostgreSQL 42,563 39,913 16,954 87,739
Comdb2 N/A 2,773 N/A 18,941

Table II presents the number of covered basic blocks for
each fuzzer. The second and third columns present the results
for generation-based fuzzers, and the last two columns present
the results for mutation-based fuzzer. From the table, we can
see that:

Simple blackbox fuzzers have good robustness in in-
dustrial practice. For example, the blackbox fuzzer SQL-
smith outperformed the coverage-guided fuzzer Squirrel by
151.05%. It is because Squirrel is an academic prototype
which lacks feedback from the industry while SQLsmith is
designed for testing PostgreSQL from the beginning.

Complex blackbox methods have limitations in indus-
trial practice. For example, SQLancer covered more basic
blocks than Squirrel on PostgreSQL but under-performed
SQLsmith on GaussDB and PostgreSQL. The reason is that
SQLancer is specialized in logic bug hunting and only uses
a part of SQL features to construct its oracle violation. Its
strength is discovering more types of bugs instead of coverage
improvement. SQLancer also uses advanced test oracles to
detect bugs, thus the CREATE TABLE statements generated
by it have many fine-tuned parameters. It performs well on its
supported DBMSs such as PostgreSQL and SQLite. However,
when adapting to PostgreSQL-based GaussDB and SQLite-
based Comdb2, the trivial differences in syntax prevented it
from function normally.

RATEL outperformed other fuzzers in terms of coverage
and adaptation range. On GaussDB, it covers 0.38x, 26.63x
more basic blocks than SQLsmith and SQLancer, respectively;
On PostgreSQL, it covers 1.06x, 1.20x, 4.29x more basic
blocks than SQLsmith, SQLancer, and Squirrel, respectively;
On Comdb2, it covers 5.83x than SQLancer.

Figure 6 demonstrates the number of basic blocks and paths
growth for each fuzzer over the 12-hour trails in the first
and the second column, respectively. The results illustrate
that RATEL not only achieves high coverage, but also has
advantages in speed. In specific, in Figure 6 (a) and Figure 6
(b), RATEL finds less basic blocks and paths than SQLsmith in
the beginning. But with the coverage guided, RATEL quickly
catches up with and surpasses it. In Figure 6 (c) and Figure 6
(d), RATEL covers more basic blocks and paths in PostgreSQL
than other fuzzers in the beginning, and it maintains lead to
the end. The results on Comdb2 in Figure 6 (e) and Figure 6
(f) also have similar trends.
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Fig. 6. Path and basic block growth for each fuzzer over the 12-hour trials.

The performance promotion of RATEL mainly dues to
high-quality coverage guidance. With the coverage guidance,
Squirrel and RATEL find more basic blocks significantly. For
example, both the curves of Squirrel and RATEL in Figure 6
are always above the other black box fuzzers. Compared to
Squirrel, RATEL still performs better because of the more
precise feedback. Squirrel employs the feedback mechanism
in AFL. Because DBMSs always have a large code scale,
Squirrel extends the bitmap from 64 KB to 256KB. However,
the AFL’s hash collision issue is still serious and unavoidable.
For example, PostgreSQL has 354K basic blocks. According
to CollAFL [26], a smaller project libtorrent (which has
164K basic blocks) still has about a 40% collision rate with
256KB. In addition, expanding bitmap size will slow down
the execution speed. For example, the speed of libtorrent
slows down to around 80%. For DBMSs like PostgreSQL,
the collision will be more significant, and the overhead will
have a more serious impact.

In contrast, RATEL implements conflict-free cross-binary
feedback. It eliminates the collision by assigning unique
counters for each basic block. To enrich block-based coverage,
RATEL analyzes critical edges, whose source has multiple
successors and destination has multiple predecessors and
represents them with dummy basic blocks. Therefore, the
improved coverage brings more opportunities for RATEL to
find more vulnerabilities.

B. Analysis of Bugs

In our practice of fuzzing DBMSs, RATEL found 32, 42,
and S previously-unknown bugs in GaussDB, PostgreSQL,
and Comdb2. In contrast, SQLancer, SQLsmith, and Squirrel
did not find them. Out of these bugs, we take two interesting
cases from these DBMSs. For both cases, we illustrate how the
challenges in adapting coverage-feedback fuzzing to DBMSs
impedes other fuzzer find these bugs. And more importantly,
we also analyze how the solutions help RATEL to find them.

—— Terminate the corresponding backend process.

SELECT pg_cancel_backend (pg_backend_pid())

—— Now the connection is closed by the server.

\c non_existing_db -- Tries to reuse the closed connection.

BB - CRASH WITH NULL POINTER!

Listing 2. The SQL statements triggering null pointer access.

a) Null Pointer Access in PostgreSQL: Listing 2 shows
the SQL statements which could trigger the bug. This
bug involves multiple interactions between the server and
the client, which could be triggered with three state-
ments. In specific, first the SQL statement SELECT
pg_cancel_backend (pg_backend_PID ()) is exe-
cuted, and the backend process of the server will shut down
and close the connection. Next, the client tries to switch to
another database by attempting to reuse the old connection,
but the connection is closed and set to NULL pointer. Next,
executing any SQL statements tries to access the NULL
connection, crashing the client as a result.

Both SQLancer and SQLsmith did not find this bug.
They use blackbox methods, which build syntactically
correct SQLs based on ASTs. However, queries like
pg_cancel_backend are DBMS specific extension func-
tions. Due to the incomplete syntax modeling, SQLancer
and SQLsmith can never generate such queries. Squirrel
uses syntax-based mutation to generate SQL statements and
enforces strict language-validity: only the inputs which pass
its AST parser could be mutated, and the generated query
is re-parsed to ensure the validity. However, the incomplete
modeling of the syntax prevented it from mutating the input
at all. Consequently, neither can Squirrel trigger this bug.

Different from these fuzzers, RATEL addresses the challenge
of fragile input generation by not only adapting PostgreSQL
with a customized dictionary, but also preserving the syntax-
based mutation with relaxed syntax checks. Because it only
needs to collect all keywords of the SQL dialect, the workload
is decreased while the performance improves. More impor-
tantly, RATEL is robustness-oriented. Even if some interesting
generated cases failed to pass syntax checks, we still collect
them for further mutation. As a result, the bug was finally
found by RATEL.

b) Use-After-Scope in Comdb2: This bug could be trig-
gered only when Comdb?2 in a specific state. As Fig. 7 shows,
this bug resides in networking code, but can only be triggered
within the context of schema change:

1) An ALTER statement is successfully parsed and converted

to the bytecode of Virtual Database Engine.

2) The semantic check of schema change is passed, and the

logic for coordinating the schema change is executed.

3) The schema change is decomposed to a series of opera-

tions, including a uuid networking request.

Solely with the stack trace, developers can analyze and fix
the bug. Listing 3 shows the code snippets of the bug in
function sorese_rcvreq in Step 3. First, when the node
sends a uuid-request, tzname is assigned with the value




strncpy0 $SPROJECT/util/str0.c Networking
osqgl_sess_create $PROJECT/db/osglsession.c
sorese_rcvreq $PROJECT/db/osqlcomm.c

net _sosql_req $PROJECT/db/osglcomm.c
net_local_ route packet_ tail $PROJECT/db/osglcomm.c
offload_net_send $PROJECT/db/osglcomm.c
osgl_comm_send socksqglreq $PROJECT/db/osglcomm.c
osql_sock_start_int $PROJECT/db/osglsglthr.c
osql_sock start $PROJECT/db/osglsglthr.c
osgl_schemachange logic S$SPROJECT/db/osglsglthr.c

comdb2SqlSchemaChange_int Logic
$PROJECT/sqlite/src/comdb2build.c

comdb2SglSchemaChange_usedb
$PROJECT/sglite/src/comdb2build.c

sqlite3vdbeExec $PROJECT/sqlite/src/vdbe.c Parsing

sqlite3Step $PROJECT/sglite/src/vdbeapi.c
sqlite3_step $PROJECT/sqlite/src/vdbeapi.c
sqlite3_maybe_step $PROJECT/db/sglinterfaces.c

Fig. 7. Stack trace captured by RATEL when the use-after-scope happened.
The shortened version is presented here for brevity.

of a local variable ureq. Second, the tzname is used to
create sess in function osgl_sess_create. However,
the local variable ureq is inaccessible at this scope. In other
words, t zname points to an invalid stack address. As a result,
Comdb2 encounters a stack use after scope error and crashes.

int sorese_rcvreqg(...) {
char *tzname;
/* grab the request =/
The networking code which handles request type of UUID.

if (osgl_nettype_is_uuid(nettype)) {
Note that ureq is a local variable.
osql_uuid_req t |HESEE
EERERE - ureq.tzname;

} else {

}

/* create the request x/
ureq does not live long enough.

Now t zname points to a invalid address.
sess = osgl_sess_create(..., [EES, ...);

osgl_sess_t xosqgl_sess_create () {
if (tzname)
Crash due to invalid memory access.
strncpy0 (sess->tzname, [, sizeof (sess->tzname));

Listing 3. The details of stack-use-after-scope on address

The bug is hidden in deep logic, which is triggered only
when the specific basic blocks are covered and Comdb2
reaches a unique state after querying a particular ALTER
statement. As shown in Fig. 7, the call stack of the bug is rather
deep. In specific, it contains three levels, namely parsing,
logic, and networking. Covering the basic blocks on the top
of the stack is hard. For blackbox fuzzers like SQLsmith and
SQLancer, they have a low possibility of generating SQL
statements to cover these states without feedback. Although
Squirrel also guides fuzzing with coverage, the spare coverage
and its strict syntax checks lower the probability to trigger the
bug. In contrast, RATEL addresses the challenges of imprecise
coverage collection with inter-binary linkage and bijective

block mapping. With the robustness-oriented syntax-based
mutation, it expanded coverage and finally triggered this bug.

More importantly, this bug requires Comdb2 in a particular
state: just passing the syntax checks is not enough, the
table must be present and its schema must be valid for the
ALTER statement. Therefore, simply re-executing the crash-
triggering input cannot meet the requirement of the table’s
state. For other fuzzers, even if recording all the executed SQL
statements, it still takes great human efforts to reproduce and
pinpoint the root cause. Unlike other fuzzers, RATEL addresses
the challenges of unreproducible bugs with on-line triage. It
monitors and catches the anomaly, saves the corresponding
input, termination log, and a customized core dump. With
detailed information, maintainers can analyze the cause of the
bug without requiring to reproduce the anomaly.

VI. LESSONS LEARNED

In this section, we introduce some lessons learned on DBMS
fuzzing deployment.

a) Importance of Initial Seeds: The richness of initial
seeds plays a vital role in bug discovery. Fuzzer will not
waste time to explore shallow and rapidly trigger deep logic
in DBMSs if initial seeds cover more functionalities. Nonethe-
less, manually writing SQL statements as initial seeds is labor-
consuming. In our practice, we found the integration tests
include a variety of SQL statements, even for corner cases.
We collected seeds from these tests for better performance.

b) Lack of Supports for Parallel Mode: The industry
deploys thousands of fuzzing instances. To optimize resource
usage, DBMS fuzzing can be performed by spawning multiple
fuzzing clients to connect to a server and pass data. Blackbox
DBMS fuzzers support parallel mode well while Squirrel can-
not follow this pattern. It is because Squirrel should maintain
program states when collecting coverage. If other clients send
queries during the interval, the collected coverage is imprecise.
In our practice, we can only set up the equivelant number
of servers as the number of clients for Squirrel, which is
ineffective. We believe it is a valuable research topic and
demand to be tackled.

c) Low Efficiency in Dropping Databases: Dropping
database decreases the noise for stateful DBMSs, which assists
bug deduplication and helps fuzzer performs more stable.
However, frequent dropping will ignore the bugs which only
can be triggered in some states and bring a lot of overhead.
For example, Squirrel and SQLancer drop databases after each
query. We occasionally drop databases to explore more states
and lower the overhead. Instead, when bugs are triggered, we
investigate the root cause of bugs with on-line triage.

d) Bugs Hidden in Heterogeneous Platforms: In practice,
we find bugs hidden in heterogeneous platforms. For example,
GaussDB is mainly deployed in Huawei Kunpeng powered
ARM servers. We find that some bugs like misaligned pointer
accesses have minor performance impacts on x86 platforms,
but can cause hardware exceptions on ARM. Undefined be-
haviors might seem trivial on some certain platforms, they can
still lead to major bugs in other platforms.



e) Difficulty in Confirming Bugs: We found many bugs
after running fuzz testing. However, we encounter resistance
in confirming them. Although the bugs found by fuzzing are
unlikely to be false-positives, for complicated stateful DBMSs,
many of these bugs are hard to reproduce. As a result, some
of the maintainers tend to refuse to confirm them. To lower
the difficulty of confirming bugs, the tester needs to supply
more detailed information about them. In our practice, besides
recording input seeds that cause anomaly like other fuzzers,
we also save the core dump file as well as the context (e.g.
stack trace and termination log). This gives the maintainers
more evidence to analyze and confirm the bug. Nonetheless,
raising the security awareness of the maintainers is still a long
way to go.

VII. CONCLUSION

In this paper, we present the practice of adapting coverage-
guided fuzzing to enterprise-level DBMSs from Huawei and
Bloomberg LP, which differs greatly from fuzzing library-
level DBMSs like SQLite. The difficulty is due to extra
complexity and distributed nature. We encountered three main
challenges, i.e. imprecise coverage collection, fragile input
generation, and unreproducible bugs. We discuss the solutions
for each challenge and propose RATEL, a coverage-guided
fuzzer for enterprise-level DBMSs. It uses an industry-oriented
design, which improves the feedback precision, enhances SQL
generation, and performs on-line bug analysis. We used RATEL
to test GaussDB, Comdb2, and PostgreSQL, and 32, 42, and 5
unknown bugs are discovered respectively. Hoping for a better
adaptation of fuzzing in enterprise-level DBMSs, we further
summarize them into valuable lessons.
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