
Go-Clone: Graph-Embedding Based Clone Detector for Golang
Cong Wang

Tsinghua University
Beijing, China

Jian Gao
Tsinghua University

Beijing, China

Yu Jiang
Tsinghua University

Beijing, China

Zhenchang Xing
Australian National University

Australia

Huafeng Zhang
Huawei Technologies

Hangzhou, Zhejiang, China

Weiliang Yin
Huawei Technologies

Hangzhou, Zhejiang, China

Ming Gu
Tsinghua University

Beijing, China

Jiaguang Sun
Tsinghua University

Beijing, China

ABSTRACT
Golang (short for Go programming language) is a fast and compiled
language, which has been increasingly used in industry due to
its excellent performance on concurrent programming. Golang
redefines concurrent programming grammar, making it a challenge
for traditional clone detection tools and techniques. However, there
exist few tools for detecting duplicates or copy-paste related bugs
in Golang. Therefore, an effective and efficient code clone detector
on Golang is especially needed.

In this paper, we present Go-Clone, a learning-based clone de-
tector for Golang. Go-Clone contains two modules – the training
module and the user interaction module. In the training module,
firstly we parse Golang source code into llvm IR (Intermediate Rep-
resentation). Secondly, we calculate LSFG (labeled semantic flow
graph) for each program function automatically. Go-Clone trains a
deep neural network model to encode LSFGs for similarity classi-
fication. In the user interaction module, users can choose one or
more Golang projects. Go-Clone identifies and presents a list of
function pairs, which are most likely clone code for user inspection.
To evaluate Go-Clone’s performance, we collect 6,110 commit ver-
sions from 48 Github projects to construct a Golang clone detection
data set. Go-Clone can reach the value of AUC (Area Under Curve)
and ACC (Accuracy) for 89.61% and 83.80% in clone detection. By
testing several groups of unfamiliar data, we also demonstrates the
generility of Go-Clone. The address of the abstract demo video:
https://youtu.be/o5DogtYGbeo

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; Software creation and management.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3338996

KEYWORDS
code clone detection, deep neural network, code similarity, go pro-
gramming language

ACM Reference Format:
Cong Wang, Jian Gao, Yu Jiang, Zhenchang Xing, Huafeng Zhang, Weil-
iang Yin, Ming Gu, and Jiaguang Sun. 2019. Go-Clone: Graph-Embedding
Based Clone Detector for Golang. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA
’19), July 15–19, 2019, Beijing, China. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3293882.3338996

1 INTRODUCTION
As an increasingly popular programming languages used in in-
dustry, Golang (short for Go programming language) is a fast and
compiled language, which has good execution efficiency on concur-
rency programming. However, there exist few tools for detecting
code duplicates in Golang.

Clone detection techniques have been well developed to assist in
detecting code duplicates and copy-paste related bugs[5]. For exam-
ple, Li et al.[4] present CCLearner, a token-based clone detection
approach leveraging deep learning. Their approach applies deep
learning on known code clones and non-clones to train models.
Koschke et al.[3] propose a clone detection approch using abstract
syntax suffix trees. Their approach can find syntactic clones in lin-
ear time and space. Jian Gao et al.[1] present Vulseeker, a semantic
learning based vulnerability seeker for cross-platform binary.

While the clone detection are successful in traditional program-
ming language such as C and Java, there is no effective clone detec-
tor at function level for Golang. The most related works are Dupl[7]
and Code Climate[2]. Dupl detects clones on suffix tree for serial-
ized abstract syntax trees (AST). It ignores values of AST nodes
and operates with their types. It focuses on clones among code’s
basic blocks. Code Climate is commercial software, which supports
clone detection. Duplication is one of Code Climate engines, which
uses a relatively simple algorithm to find similar code snippets.
They parse Golang files into abstract syntax trees. When looking
for duplication, they compare nodes in AST. Existing Golang clone
detection tools are both based on abstract syntax trees. They detect
clones at block level, and their methods are sensitive for code struc-
ture changes such as code line insertion and deletion which result
in Type-3 clones.

https://youtu.be/o5DogtYGbeo
https://doi.org/10.1145/3293882.3338996
https://doi.org/10.1145/3293882.3338996

ISSTA ’19, July 15–19, 2019, Beijing, China Cong Wang, Jian Gao, Yu Jiang, Zhenchang Xing, Huafeng Zhang, Weiliang Yin, Ming Gu, and Jiaguang Sun

In this paper, we present Go-Clone, a learning-based clone de-
tector for Golang. Go-Clone contains two modules: the training
module and the user interaction module 1. In the training mod-
ule, firstly we parse Golang source code into llvm IR by gollvm[6].
Secondly, LSFG[1] (labeled semantic flow graph) is calculated for
each program function automatically. LSFG contains feature vec-
tors of basic blocks, control flow, and data flow information. Then,
Go-Clone encodes LSTFs into a dense vector using a deep neural
network model. In the user interaction module, users can choose
one or more Golang projects. Go-Clone works out a list of function
pairs, which are most likely clone code.

To evaluate Go-Clone’s performance, we collect 6,110 commit
versions from 48 Github projects to construct a Golang clone detec-
tion data set. Go-Clone can reach the value of AUC (Area Under
Curve) andACC (Accuracy) for 89.61% and 83.80% in clone detection.
By testing several groups of unfamiliar data, we also demonstrates
the generility of Go-Clone. Furthermore, Go-Clone is robust to
subtle changes in code structures. We demonstrate this robustness
with a cloned code pair from our empirical study, which has subtle
differences in code structures.

2 GO-CLONE DESIGN

Model Training

User Interaction

Golang
Projects

Gollvm

LLVM
IR

LSFG

Mark Label

Labeled Pairs

Training

DNNGo (Same as above)

LSFG Pairs

LSFG Contruction

Load Model

Prediction Function A
Function B

Similarity: 0.987

Most Similar Pairs

OutputInput

TensorflowUser

LSFG
Contruction

Block Feature

Figure 1: Framework of Go-Clone

Framework Design. Fig. 1 shows the overall framework of Go-
Clone. Go-Clone contains two modules: the training module and
the user interaction module. In the training module, firstly we parse
Golang source code into llvm IR by gollvm[6]. Secondly, LSFG[1] (la-
beled semantic flow graph) is calculated for each program function
automatically. We mark two same functions in different commit
version as clone pairs. Otherwise, two functions are non-clone
pairs. Then, Go-Clone trains LSFG pairs in a deep neural network
model. In the user interaction module, users can choose one or more
Golang projects. Same as pretreatment steps in training model, we
convert Golang programs into LSFGs. Then LSFGs are put into
the trained model to obtain their vector representations. Finally,
Go-Clone works out a list of function pairs, which are most likely
clone code. The cosine distance between the embedding vectors[1]
of two Golang functions are used to measure the function similarity.
Details of the Go-Clone’s design are illustrated below.

1Code of the user interaction module is now open source. You can access it at
https://github.com/wangcong15/go-clone

1 // Close releases the resources used by the pool.
2 func (p *Pool) Close() error {
3 p.mu.Lock()
4 if p.closed {
5 p.mu.Unlock()
6 return nil
7 }
8 p.closed = true
9
10 pc := p.idle.front
11 p.idle.count = 0
12 p.idle.front, p.idle.back = nil, nil
13 if p.ch != nil {
14 close(p.ch)
15 }
16 p.mu.Unlock()
17 for ; pc != nil; pc = pc.next {
18 pc.c.Close()
19 }
20 p.active -= p.idle.count
21 return nil
22 }

1 {
2 entry:
3 %idle = alloca %List.0, align 8
4 call void @llvm.dbg.value(metadata %Pool.0* %p, 1
metadata !1367, metadata !DIExpression()), !dbg !1368
5 %0 = bitcast %List.0* %idle to i8*
6 call void @llvm.lifetime.start.p0i8(i64 48, i8* nonnull %0)
7 %icmp.288 = icmp eq %Pool.0* %p, null, !dbg !1369
8 br i1 %icmp.288, label %then.220, label %else.220
9
10 then.220: ; preds = %entry
11 call void @__go_runtime_error(i8* nest undef, i32
6), !dbg !1369
12 unreachable

13 else.220: ; preds = %entry
14 %field.576 = getelementptr inbounds %Pool.0, %Pool.0*
%p, i64 0, 1 i32 5, !dbg !1369
15 call void @sync.Mutex.Lock(i8* nest undef, %Mutex.0*
nonnull 1 %field.576), !dbg !1371
...Source Code LLVM IR

LSFG

Figure 2: Example: From Source Code To LSFG

LSFG Construction. To calculate the similarity between functions,
it is challenging to construct a united expression for every Golang
function. In order to fully express the characteristics of the program,
the desired united expression should meet three conditions: (1)
contains a feature vector for each basic block, (2) reserves control
flow information, (3) reserves data flow information. To that end,
we propose LSFG, short for “labeled semantic flow graph”. Nodes
of LSFG are feature vectors for each basic block (introduced next),
while edges are control flow and data flow between basic blocks. If
two blocks write and read a shared memory location respectively,
we create a data flow edge for them. Control flow edges are labeled
0, and data flow edges are labeled 1. We use gollvm[6] to convert the
code into llvm IR. IR is a universal language that sits between the
high-level program and the low-level backend. IR contains adequate
information to construct LSFG. We present an example in Fig.2. The
example is a code snippet from a real project. For function “Close”,
22 lines of source code turns to 62 lines of IR code. Based on IR’s
grammar, the function is divided into five blocks. LSFG has six
edges. One of the edges is labeled “0,1”, while the others are labeled
“0” only. “0,1” means that there are both data and control flows
between two nodes, while “0” means there is only control flow. The
unique data flow edge (red color in Fig. 2) corresponds to the shared
memory of variable p.idle.count.

Table 1: Dimensions of Block’s Feature Vector

Index Category Name Example Remark
1 Terminator Instructions ret / br / invoke by llvm
2 Binary Operations add / sub / mul by llvm
3 Bitwise Binary Operations shl / lshr / ashr by llvm
4 Vector Operations extractelement by llvm
5 Aggregate Operations extractvalue by llvm
6 Memory Access / Addressing alloca / store by llvm
7 Conversion Operations bitcast .. to by llvm
8 Other Operations, except for 8/9 icmp / select by llvm
9 Concurrency Operations chansend1 Golang
10 Exception Instructions panic / defer Golang

Block Feature. Golang, as a language, has its own grammar char-
acteristics. Therefore, it is a problem to customize the design of
block feature for Golang. By referring to feature design in previ-
ous works[1][4], we decide to use a customized feature vector for
Golang. As shown in Table. 1, a block’s feature vector has ten di-
mensions, eight of which are IR instruction categories, while the
other two are especially for concurrency and exception instructions.

Go-Clone: Graph-Embedding Based Clone Detector for Golang ISSTA ’19, July 15–19, 2019, Beijing, China

The reason for this design is mainly to take into account the distinc-
tive features of Golang in concurrency and exception development.
For example, the first basic block in Fig. 2 is labeled as “entry”.
There is one terminator instruction (Line.8-br), one memory access
(Line.3-alloca), one conversion operation (Line.5-bitcast) and three
other operations(Line.4-call, Line.6-call, Line.7-icmp). Therefore,
the block feature of “entry” is [1,0,0,0,0,1,1,3,0,0].

Mark Clone or Non-clone Labels. . To our knowledge, there are
no public clone detection datasets for Golang. Therefore, we need
to label clone and non-clone function pairs. We collect programs in
different commit versions from Github’s projects. The procedure
converting Golang into llvm IR is at package level, so it is hard
to avoid identical functions (completely same) between different
commit versions. Therefore we preprocess the code to remove
identical functions. We mark the two same functions (by function
names) with certain amount of code changes in different commit
versions as clone pairs. Otherwise, two functions are non-clone
pairs if they are different functions. Possibly there might exist clone
pairs of two different functions. We have considered this situation,
but its impact could be very small, for the following two reasons: (1)
The amount of this situation is very small compared to all non-clone
pairs. Randomly, we pick only a small proportion of non-clone pairs
(equal to clone pairs), so this situation is unlikely to bring negative
impact on our model. (2) We demonstrate Go-Clone’s robustness
in the part of evaluation. Our model can detect duplicate code in
different functions.

Training and Prediction. Go-Clone uses the semantics-aware
DNN model presented in[1]. The training procedure is divided
into batches. Each batch has ten pairs of training data. The purpose
of batches is to improve parameter optimization speed. Model train-
ing is done for many times (iteration). After every iteration, we
evaluate the model’s performance on validation data, and decide
whether we need to change the model hyperparameters for the
model and restart the model training. After many experiments, we
set the number of network layer as five. The embedding size is 64,
which means the network can convert LSFG into a 64-dimension
vector. This vector is called an embedding vector. When the values
of ACC and AUC are stabilized, we save the model parameters. To
predict similarities between functions, Go-Clone loads the trained
parameters into the model. The trained model calculate the embed-
ding vectors for LSFGs. The more similar the embedding vector
is, the more likely the source code is duplicate. We calculate the
cosine distance between the embedding vectors[1] to measure the
function similarity.

Tool Usage. Go-Clone is a command line tool, implemented in
Golang and Python. Golang is used to extract each IR of function.
Python is applied for other tasks, such as training, prediction, etc.
The overall tool kit contains three instructions: (1) Go2IR: Convert
Golang source code into llvm IR files. (2) Go-CloneE: Extract IR
code and convert into LSFG. (3) Go-CloneF: Finish clone detection
and print clone pairs.

3 EVALUATION
To our knowledge, there are no public clone detection datasets for
Golang. Therefore, at the beginning of this section, we describe

the construction of our dataset based on 48 projects on Github.
We calculate AUC and ACC to evaluate Go-Clone’s performance
in each training iteration. Then we present the results in clone
detection experiment.

3.1 Experiment Setup
Dataset Construction. Manually building data sets is a very time-

consuming task. We construct a Golang clone detection data set au-
tomatically. Firstly, we collect 6,110 commit versions from Github’s
48 projects. All these programs are pre-processed to remove iden-
tical functions (completely same). After that, we mark two same
functions in different commit version as clone pairs. Otherwise, two
functions are non-clone pairs. We randomly pick a subset of the
non-clone pairs because the number of non-clone pairs is explosive.
Then, the entire data set includes 86,532 function pairs, in which
the proportion of clone pairs and non-clone pairs is 1:1. The ratio
of training, validation and test data is 10:1:1.

RQ1: Accuracy of clone detection. Randomly, we extract 5,000
training pairs, 500 validation pairs, and 500 test pairs. In these three
groups, the proportion of clone pairs and non-clone pairs is 1:1.
For the deep neural network, batch size is 10. Meanwhile, in each
iteration, all these data are trained or tested.

RQ2: Generality of Go-Clone. In RQ1, Go-Clone is trained by 5,000
training pairs. To prove the generality that Go-Clone works well in
detecting clones on other data, we design an experiment. We divide
the additional test data by 500 pairs per group. In each group, the
proportion of clone pairs and non-clone pairs is still 1:1. Go-Clone
has never been exposed to these testing pairs. These groups test
the generality of the trained model in RQ1. We collect and compare
the results.

3.2 Result

Figure 3: Clone Detection Results on Go-Clone

(a) Loss: Go-Clone’s Clone Detection (b) ROC Graph

Figure 4: (a) Loss of Training (b) ROC Curve

ISSTA ’19, July 15–19, 2019, Beijing, China Cong Wang, Jian Gao, Yu Jiang, Zhenchang Xing, Huafeng Zhang, Weiliang Yin, Ming Gu, and Jiaguang Sun

(a) ACC between Groups (b) AUC between Groups (c) ROC Curve

Figure 5: (a)(b) Go-Clone’s original performance (horizontal line) is intermediate. (c) ROC graphs: Compared to the other 5
test groups, Go-Clone’s original performance (in navy blue) is intermediate.

RQ1: AUC and ACC increase during training iterations. Fig. 3
shows four measures in the 10 training iterations. ACC-Train is
the accuracy rate for 5000 pairs of training data. The DNN model
initializes without any experience, so ACC-Train starts with a low
value (72.12%) in the first iteration. After ten iterations, ACC-Train
reaches 84.52%, increased by 12.40%. From Fig. 3, we can see that
ACC-Valid rises steadily from 75.00% to 83.20%. ACC-Test is the
accuracy rate for 500 pairs of test data. In the previous iterations,
ACC-Test experiences small fluctuations and finally stabilizes at
around 83.80%. AUC-Test is another measure to evaluate the quality
of the model. AUC reaches 89.61% after ten iterations. The lower
the loss, the better a model. The loss of training decreases steadily
from 7.787 to 6.717 (Fig. 4(a)). Meanwhile, Fig. 4 shows the ROC
curve of Go-Clone’s clone detection performance. As the threshold
changes, the true positive rate increase much faster than the false
positive rate.

RQ2: Go-Clone is generic. In RQ2, we pick the other test data by
500 pairs per group from the projects that do not contain the 6000
function pairs in the RQ1. Our trained model has not been exposed
to this new test data during the model training. Fig. 5(a) shows
ACC-Test between test groups. The horizontal lines indicate the
original value (83.2%). From the figure, we can see that Go-Clone’s
original ACC-Test is intermediate among the ten groups. The best
performance is 88.6% in Group.10, which is even 3.4% higher. Simi-
larly, Fig. 5(b) shows AUC-Test between test groups. Nine groups
of test data have higher AUC-Test than Go-Clone’s original per-
formance. Fig. 5(c) shows the comparison between ROC curves of
RQ1 and the first new five groups. Go-Clone’s original performance
(in navy blue) is intermediate. We can conclude that Go-Clone’s
model also has good performance when meeting unfamiliar data.
Therefore, Go-Clone is generic.

Compatible with subtle changes in code structures. An example
of cloned code is shown in (Fig. 6), which is detected by Go-Clone.
The bodies of the two program functions have 83 and 73 lines of
code, respectively. As shown in the figure, statements beyond red
rectangles are entirely dissimilar. The two functions set up a session
for servers and clients. However, it is straightforward to tell that
these two codes are similar through human observation (Even the
comments are surely duplicate). Both Golang functions come from
a real project. Although two functions have a lot of changes in code
structures, Go-Clone can detect them.

Figure 6: Example of Cloned Code Detected by Go-Clone.

4 CONCLUSION
In this paper, we have presented Go-Clone, a learning-based clone
detector for Golang. Go-Clone can work out a list of function pairs,
which are most likely clone code. Go-Clone can reach the value of
AUC and ACC for 89.61% and 83.80%, respectively. Also we have
proved its generality. Based on Go-Clone, we could do exciting
things, such as vulnerability search, copy-paste bug search, etc.

REFERENCES
[1] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: a seman-

tic learning based vulnerability seeker for cross-platform binary. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering.
ACM, 896–899.

[2] Bryan Helmkamp, Chris Hulton, and Devon Blandin. 2018. Code Climate. https:
//docs.codeclimate.com/docs/duplication. [Online; accessed 18-Sept-2018].

[3] Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone detection using
abstract syntax suffix trees. In Reverse Engineering, 2006. WCRE’06. 13th Working
Conference on. IEEE, 253–262.

[4] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
CCLearner: A Deep Learning-Based Clone Detection Approach. In Software Main-
tenance and Evolution (ICSME), 2017 IEEE International Conference on. IEEE, 249–
260.

[5] Lannan Luo, Jiang Ming, DinghaoWu, Peng Liu, and Sencun Zhu. 2014. Semantics-
based obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ACM, 389–400.

[6] ThanMcIntosh. 2018. gollvm - Git at Google. https://go.googlesource.com/gollvm/.
[Online; accessed 20-Sept-2018].

[7] Mibk. 2018. Dupl. https://github.com/mibk/dupl. [Online; accessed 18-Sept-2018].

https://docs.codeclimate.com/docs/duplication
https://docs.codeclimate.com/docs/duplication
https://go.googlesource.com/gollvm/
https://github.com/mibk/dupl

	Abstract
	1 Introduction
	2 Go-Clone Design
	3 Evaluation
	3.1 Experiment Setup
	3.2 Result

	4 Conclusion
	References

