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ABSTRACT
Protocols in autonomous vehicles are essential for efficient in-
vehicle network communication. To ensure their security, many
research efforts have been paid to the fuzz testing of their imple-
mentations. However, those fuzzing optimizations often struggle
to manage the protocols’ complex state, resulting in low efficiency
in branch covering and vulnerability detection.

This paper introduces SPFuzz, a stateful path based parallel
fuzzing framework to improve the testing performance of proto-
cols in autonomous vehicles. The basic idea is to accelerate fuzzing
speed by dividing tasks to reduce conflicts and dispatching them
on different fuzzing instances. SPFuzz first leverages protocol state
and data models to generate stateful paths, then divides them into
discrete tasks and dispatches them based on their complexity and di-
versity, ensuring a balanced workload distribution across all fuzzing
instances. For evaluation, we implement SPFuzz on top of the state-
of-the-art protocol fuzzer Peach and conduct experiments on four
prominent vehicle protocols, including ZMTP, MQTT, DDS, and
DoIP. The results show that, compared to the original parallel mode
of Peach, SPFuzz achieves the same code coverage at a speed of
2.8X-473.2X, with 5.52% more branch coverage within 24 hours.
SPFuzz uncovered six previously unknown vulnerabilities in those
protocol implementations, with five CVEs assigned in the national
vulnerability database. Additionally, SPFuzz has been adapted to
ECUs from several vendors, such as NISSAN, and triggered a total
of four vulnerabilities that may cause system crashes.

1 INTRODUCTION
The rapid evolution of autonomous vehicles necessitates advanced
communication protocols to ensure seamless interactions among di-
verse system components. However, these protocols inadvertently
increase the attack surface. Attackers could exploit protocol vul-
nerabilities for malicious purposes, such as disabling control units
or hijacking control rights. For instance, a flaw in the Jeep Ucon-
nect system once allowed attackers to take control of the entire
vehicle [18]. Therefore, ensuring the security of protocols in au-
tonomous vehicles is significantly essential.

Fuzzing has emerged as a potent automated vulnerability detec-
tion technique for real-world protocol implementations [3, 5, 15].
Prior research primarily focused on improving fuzzer efficiency
through innovative algorithms that gather more program informa-
tion to guide deliberate input modifications [7, 9, 14]. However, the
performance improvement achieved by algorithm optimization has
its limits. With the advancement of multi-core hardware technology
and the abundance of computing resources, another direction to
enhancing fuzzing efficiency is to parallel fuzzing tasks.

Yu Jiang and Zhengxiong Luo are the corresponding authors.

There are mainly two types of parallel fuzzers: mutation-based
and generation-based. For the original mutation-based fuzzers, such
as AFL [20], typically lack explicit task division and allocation. Their
reliance on the stochastic nature of mutation often leads to abun-
dant task conflicts in parallel fuzzing. Several optimizations, such
as PAFL [8] and AFLteam [10], employ a seed-based division ap-
proach to divide the fuzzing task. The collection of the seeds is
divided according to different strategies and allocated to various
fuzzing instances, which utilize a global view to synchronize infor-
mation between instances. As for testing protocols in autonomous
vehicles, two main issues occur: (i) The lack of protocol structure
information often leads to seed mutations that violate message
format rules, where a seed is a concatenation of protocol packet se-
quences in the context of protocol fuzzing. (ii) Since different seeds
may refer to identical protocol states, conflicts between fuzzing in-
stances are inevitable. Consequently, designating a singular seed as
a mutation-based task falls short in protocol fuzzing. On the other
hand, generation-based fuzzers, such as Peach [3], improve per-
formance by leveraging protocol format specifications to generate
valid packets. They apportion tasks by fuzzing iterations predicated
on the data model, segmenting all iterations of the fuzzing task
across different fuzzing instances. While this strategy circumvents
conflicts, it is simplistic and inefficient as it sidesteps the protocol
state model information of the input program.

For a more accurate and efficient parallel fuzzing framework, we
need to solve two main challenges. (i) How to divide tasks to re-
duce conflicts without information loss? Traditional fuzzers do not
take state information into account during task division. However,
protocols in autonomous vehicles, which manage communications
between various Electronic Control Units (ECUs) and sensors, tend
to employ a decentralized structure with multiple states, such as ser-
vice discovery, service subscription, and publishing. If state models
are not accounted for in task division, the tasks may lack specificity
and lead to conflicts. (ii) How to efficiently execute parallel fuzzing
tasks across all instances? Since different tasks may have different
complexities, the task allocation mechanism should be able to bal-
ance the workloads across instances. Testing protocols in parallel
involves mutually exclusive operating system resources. Effective
isolation is crucial during protocol service discovery or publishing
stages, where multicast packets are sent to specific addresses and
ports, to prevent interference between different fuzzing instances.

This paper introduces SPFuzz, a stateful path based parallel
fuzzing framework, to address the above problems. For the first
challenge, we use a stateful path based task division mechanism to
reduce conflicts and avoid the loss of state information. First, we
calculate the operation complexity for each data model by travers-
ing its hierarchical tree structures to obtain the weight of each
element. Second, we utilize the diverse state information derived
from the autonomous vehicle protocols to construct a weighted
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state model. This model explicitly considers the interconnections
between the state model and data models. Based on this, we fur-
ther generate stateful paths with calculated weights, facilitating
task division that minimizes conflicts. For the second challenge,
we involve efficient parallel execution across all fuzzing instances,
aiming to balance workloads and minimize mutual interference. We
assess the aggregate score of each candidate stateful path and group
paths into tasks with similar weights to optimize task distribution.
After these tasks are assigned to different fuzzing instances, SPFuzz
employs network namespaces to isolate the task executions, pre-
venting the multicast and broadcast packets generated by different
fuzzing instances from affecting each other.

We implement SPFuzz on top of the most widely used proto-
col fuzzer Peach and evaluate its performance on four prominent
protocols, including DoIP, MQTT, DDS, and ZMTP, all of which
have been well-tested and widely used in autonomous vehicles. The
experimental results indicate that, in comparison to Peach’s default
parallel mode, SPFuzz achieves identical code coverage at a speed of
2.8X-473.2X while gaining 5.52% more branches on average over 24
hours. Meanwhile, SPFuzz exposed six previously unknown bugs
in these implementations, with five CVEs assigned in the national
vulnerability database. SPFuzz has also been adapted to test the
ECUs used in real vehicle devices from several vendors, such as
NISSAN, and discovered four bugs that can cause ECU crash or
unresponsive, highlighting the practicality of SPFuzz.

2 BACKGROUND
Protocols in Autonomous Vehicles. Autonomous vehicles rely
on networks like the Controller Area Network (CAN) to connect
sensors and ECUs, which facilitates crucial data collection and
control of vehicle components. As data demands and speed require-
ments have increased, alternative networks such as LIN, FlexRay,
and MOST have been developed to meet these evolving needs.

Modern autonomous vehicles increasingly adopt 100BASE-T1
automotive Ethernet, leveraging the established TCP/IP protocol
framework for highly efficient data transmission. It enables ad-
vanced communication middleware, like the Data Distribution Ser-
vice(DDS) and ZMTP, enhancing both intra- and inter-vehicle com-
munications. While these advancements significantly improve vehi-
cle networking, they also underscore the importance of eliminating
potential security bugs in their implementations.

Protocol Fuzzing. Fuzzing is a crucial technique for detecting
flaws in network protocol implementations. It can be categorized
into two types based on the packet production method: mutation-
based and generation-based.

Mutation-based fuzzers operate by randomly mutating existing
inputs from a defined corpus, eliminating the need for prior knowl-
edge of protocol specifications, thus simplifying use [14, 20]. These
fuzzers adapt to protocol implementations by using workarounds,
such as crafting test harnesses for unit testing specific server states
or treating inputs sent to the server as concatenated messages for
system testing. Meanwhile, they are typically enhanced with a feed-
back loop, e.g., code coverage, for optimization. However, they may
encounter hurdles with highly structured packets due to a lack of
format specifications and are not scalable in black-box scenarios
because of limited system insight.

In contrast, generation-based fuzzers generate packets using
specified protocol models, encompassing data and state models,
making them more suitable for protocol fuzzing [3, 5, 15]. The
state model, typically represented as a graph, outlines valid mes-
sage sequences during server interactions, while the data model
defines the acceptable message format for each state, including field
types, sizes, and valid value ranges. Adapting these fuzzers requires
understanding the protocol’s interaction logic, which users must
obtain by analyzing source code or reviewing protocol specifica-
tions. Their structured approach provides a more organized and
logical method for scrutinizing protocol implementations, making
them a preferred choice.

3 SYSTEM DESIGN
Figure 1 shows an overview of SPFuzz, which follows a parallel
fuzzing process that takes the same input as traditional generation-
based fuzzers. The input includes the target protocol implemen-
tation and protocol specification that is represented by the data
models and state models. The data model details the syntactic and
semantic information necessary for generating data packets, while
the state model depicts the execution process of a fuzzing task,
reflecting the state changes of the system under test.

Figure 1: SPFuzz Overview. It mainly consists of two compo-
nents: (i) a task division part to generate a stateful path based
on the protocol state and data model; (ii) a parallel execution
part to allocate tasks, and manage isolation execution.

Given the data and state models, instead of starting fuzzing and
generating data packets directly, SPFuzz thoroughly analyzes and
computes these models first. This is instrumental in facilitating
a logical division of tasks based on the insights derived from the
models’ information. Initially, it computes the mutation complexity
inherent in each data model used for fuzz testing. This computation
involves a systematic traversal of the data model’s elements, which
are organized in a hierarchical tree structure. Subsequently, weights
are methodically assigned to the state nodes according to the inter-
relations between the state and data models. This forms the basis
for generating various stateful paths derived from the weighted
state model. Distinct path sets are delineated in the state model,
with each path’s weight calculated. A weight-based task allocation
module combines the path sets into tasks of similar weights, thereby
balancing the computational workloads. Finally, these tasks are al-
located to different fuzzing instances for testing, which initiate the
fuzzing loop. During parallel execution, isolation techniques are
employed to ensure that the tested protocol processes the generated
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data packets independently, preventing mutual interference. This
module facilitates efficient parallel fuzz testing.

3.1 Task Division
3.1.1 Weight Calculation. Protocol packets, characterized by their
high structural organization, are represented by a data model. This
model, resembling a tree structure, comprises nodes of diverse ele-
ments detailing their hierarchical arrangement, types, attributes,
and inter-element relationships. In the fuzzing process, each ele-
ment type is associated with the specific set of mutators that operate
based on the element’s attributes, resulting in diverse data packets.
The data model determines the computational complexity, referred
to as its weight, of a network packet type during fuzzing.

This module computes the weight for all data models 𝐷𝑠 by
traversing their tree structure. For each mutable element node,
the module retrieves relevant mutators based on the node’s type
and calculates the count of executable operations for each mutator,
considering the node’s specific attributes. The aggregate of these op-
erations constitutes the element’s weight. If the element possesses
dependencies, like 𝑠𝑖𝑧𝑒 or 𝑐𝑜𝑢𝑛𝑡 relationship, with other elements,
it is omitted from the calculation. The weights of all child elements
are sequentially calculated and then multiplied to determine the
total weight of these sub-tree. This total is subsequently added to
the parent element’s weight, yielding the overall weight of their
subtree. The module recursively calculates, moving from the bot-
tom upwards, to determine the weight of this specific data model.
Subsequently, it computes the corresponding weight for each data
model associated with every state in the state model.

3.1.2 Stateful Path Generation. Following the completion of the
weight calculations across all data models, we obtain a weighted
state model manifesting as a weighted directed graph. This module
methodically generates a set of paths informed by the state model’s
information, specifically for the allocation of fuzz testing tasks.

The algorithm 1 details how SPFuzz generates the set of stateful
paths. The algorithm starts with two primary inputs: 1) Weighted
Data ModelsWD𝑠M , derived from preceding calculations, and 2)
the State Model SM , characterized as a directed graph. We begin
the process by identifying the initial state node 𝑆𝑡𝑎𝑡𝑒I within the
state model. Following this, we engage in path generation through
the recursive Generate procedure, which takes the current state
𝑆𝑡𝑎𝑡𝑒T , the path P, and the path’s weight𝑊P as parameters (line
4). Each state in the model encompasses a variety of actions. We
commence by determining the type of each action (lines 6-8). If
the Action 𝐴T is of either 𝑂𝑢𝑡𝑝𝑢𝑡 or 𝐼𝑛𝑝𝑢𝑡 type, we append it
to the Path and procure its corresponding Weighted Data Model
WDM (lines 9-11). Then, we integrate the weightsWD of the
data model DM corresponding to all 𝑂𝑢𝑡𝑝𝑢𝑡 actions into the over-
all path weightWP . Subsequently, we assimilate the weightsWD
of the data model DM associated with the 𝑂𝑢𝑡𝑝𝑢𝑡 action into the
cumulative path weightWP (lines 12-14). Conversely, if the Action
𝐴T is of the 𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑡𝑎𝑡𝑒 type, we include the current path P in
the 𝑆𝑒𝑡𝑃𝑎𝑡ℎ and recursively invoke the Generate procedure to con-
struct the path for the subsequent state (lines 15-18). In instances
where the action type is identified as 𝑆𝑡𝑜𝑝 , which indicates a ter-
mination state, we add the current Path to the Path Set, thereby
marking the completion of this process segment (lines 19-21).

This procedure iterates until it has traversed all states within the
state model, effectively dividing it into distinct state paths. These
paths are then allocated to different fuzzing instances. In generating
paths, the algorithm utilizes state and data models’ information to
prevent overlap. Additionally, the weight of each path is calculated
to balance the workload of the allocated tasks.

Algorithm 1: Stateful Path Generation
Input:WD𝑠M : Weighted Data Models
Input: SM : State Model
Output: 𝑆𝑒𝑡𝑃𝑎𝑡ℎ : The set of stateful paths

1 Algorithm
2 𝑆𝑒𝑡𝑃𝑎𝑡ℎ ← ∅, P ← ∅
3 𝑆𝑡𝑎𝑡𝑒I ← GetInitState(SM )
4 Generate( 𝑆𝑡𝑎𝑡𝑒I , ∅, 0)
5 Procedure Generate( 𝑆𝑡𝑎𝑡𝑒T , P,𝑊P)
6 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 ← GetActions(𝑆𝑡𝑎𝑡𝑒T )
7 for 𝐴T ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 do
8 switch 𝐴T .𝑇 𝑦𝑝𝑒 do
9 case𝑂𝑢𝑡𝑝𝑢𝑡 ∨ 𝐼𝑛𝑝𝑢𝑡 do
10 DM ← GetDataModel(𝐴T )
11 P ← Joint(P, 𝐴T )
12 if Equal(𝐴T .𝑇 𝑦𝑝𝑒,𝑂𝑢𝑡𝑝𝑢𝑡 ) then
13 𝑊D ← GetWeight(WD𝑠M ,DM )
14 𝑊P ←𝑊P +𝑊D
15 case𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑡𝑎𝑡𝑒 do
16 for 𝑆𝑡𝑎𝑡𝑒N ∈ 𝐴T .𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒𝑠 do
17 𝑆𝑒𝑡𝑃𝑎𝑡ℎ ← 𝑆𝑒𝑡𝑃𝑎𝑡ℎ ∪ {P,𝑊P }
18 Generate( 𝑆𝑡𝑎𝑡𝑒N , P,𝑊P)

19 case 𝑆𝑡𝑜𝑝 do
20 𝑆𝑒𝑡𝑃𝑎𝑡ℎ ← 𝑆𝑒𝑡𝑃𝑎𝑡ℎ ∪ {P,𝑊P }
21 return

22 return

3.2 Parallel Execution
3.2.1 Weight-Aware Task Allocation. The module effectively allo-
cates tasks to fuzzing instances based on weighted stateful paths,
aiming for workload balance. Algorithm 2 provides our weight-
aware task allocation strategy.

The algorithm 2 outlines the task allocation process of SPFuzz,
which assigns tasks to fuzzing instances based on the weight of
stateful paths. Given the stateful path set 𝑆𝑒𝑡𝑃𝑎𝑡ℎ and the number
of fuzzing instances N𝑓 , we initially aggregate the weights of all
paths in 𝑆𝑒𝑡𝑃𝑎𝑡ℎ . This total is then divided by the number of fuzzing
instances N𝑓 , to establish an ideal average weightW𝑎𝑣𝑔 for each
task (line 2). Following this, tasks are sequentially allocated to each
fuzzing instance (lines 3-9). The algorithm employs the procedure
GetNextPath to select the next candidate path from the unallocated
Path 𝑆𝑒𝑡𝑃𝑎𝑡ℎ for a given set of tasks (line 6). It initializes 𝑆𝑐𝑜𝑟𝑒
and P𝑛𝑒𝑥𝑡 for tracking the candidate (line 12). For each candidate
path P𝑐 in the unallocated set, the procedure calls CalcScore
to calculate its score based on the similarity to each path in the
current 𝑆𝑒𝑡𝑇𝑎𝑠𝑘 , where a higher homogeneity results in a higher
score. These scores are then aggregated to determine the most
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Algorithm 2:Weight-Aware Task Allocation
Input: 𝑆𝑒𝑡𝑃𝑎𝑡ℎ : The set of stateful paths
Input: N𝑓 : The number of fuzzing instances
Output:𝑇𝑎𝑠𝑘𝑠 : The array of tasks allocated to each instances

1 Algorithm
2 W𝑎𝑣𝑔 ← SumWeight(𝑆𝑒𝑡𝑃𝑎𝑡ℎ )/N𝑓

3 for 𝑖 from 0 to N𝑓 do
4 𝑇𝑎𝑠𝑘𝑠 [𝑖 ] ← ∅ ,W𝑇 ← 0
5 while W𝑇 <W𝑎𝑣𝑔 do
6 P𝑛𝑒𝑥𝑡 ← GetNextPath(𝑇𝑎𝑠𝑘𝑠 [𝑖 ], 𝑆𝑒𝑡𝑃𝑎𝑡ℎ)
7 W𝑇 ← W𝑇 + P𝑛𝑒𝑥𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡

8 𝑇𝑎𝑠𝑘𝑠 [𝑖 ] ← 𝑇𝑎𝑠𝑘𝑠 [𝑖 ] ∪ P𝑛𝑒𝑥𝑡
9 𝑆𝑒𝑡𝑃𝑎𝑡ℎ ← 𝑆𝑒𝑡𝑃𝑎𝑡ℎ \ P𝑛𝑒𝑥𝑡

10 return 𝑇𝑎𝑠𝑘𝑠

11 Procedure GetNextPath(𝑆𝑒𝑡𝑇𝑎𝑠𝑘 , 𝑆𝑒𝑡𝑃𝑎𝑡ℎ)
12 P𝑛𝑒𝑥𝑡 ← ∅, 𝑆𝑐𝑜𝑟𝑒N ← 0
13 for P𝑐 ∈ 𝑆𝑒𝑡𝑃𝑎𝑡ℎ do
14 𝑆P ← 0
15 for P𝑡 ∈ 𝑆𝑒𝑡𝑇𝑎𝑠𝑘 do
16 𝑆P ← 𝑆P + CalcScore(P𝑐 , P𝑡 )
17 if 𝑆𝑐𝑜𝑟𝑒P > 𝑆𝑐𝑜𝑟𝑒N then
18 𝑆𝑐𝑜𝑟𝑒N ← 𝑆𝑐𝑜𝑟𝑒P , P𝑛𝑒𝑥𝑡 ← P𝑐
19 return P𝑛𝑒𝑥𝑡

suitable candidate path for addition to the task set (lines 13-16).
If the current Path’s score 𝑆P is greater than the current highest
score, the path P𝑐 becomes the new candidate and the 𝑆𝑐𝑜𝑟𝑒N is
updated accordingly (lines 17-18). The procedure returns the path
P𝑛𝑒𝑥𝑡 with the highest score, which is then added to the task set of
the current fuzzing instance (line 19).

Once a candidate path is chosen, it is added to the task, and the
algorithm updates both the task’s total weight and the status of the
unallocated path set (lines 7-9), continuing this process until the
total weight of the task approaches the averageweightW𝑎𝑣𝑔 (line 5).
This iterative approach guarantees that the task allocation for each
instance aligns closely with the average weight, thus facilitating a
balanced distribution of the workloads.

3.2.2 Execution Management. Parallel execution efficiently utilizes
multi-core computational resources. However, unlike fuzz testing of
binary library objects, testing protocol implementations in parallel
involves operating system resources, such as IP addresses and ports.
Modifying the configuration files of the program under test can
enable the use of independent resources, but this may introduce
inconveniences in testing. Moreover, during protocol service discov-
ery or publishing stages, multicast or broadcast network packets are
generated and sent to specific addresses. Without effective isolation,
packets generated by one instance could impact others’ SUT. The
parallel execution module addresses this by establishing separate
network namespaces for each SUT prior to execution, ensuring that
each has its own independent protocol stack and networking space.
It creates network interface devices and activates them within these
namespaces. After setting up the execution environment, the mod-
ule associates the fuzzing instance and the SUT with the designated
network namespace (Netns). This approach not only isolates the

Table 1: Average number of code branches achieved by each
fuzzer within 24 hours.

Subject Peach-P SPFuzz TimeP TimeS I𝑏𝑟𝑎𝑛𝑐ℎ Speed

libzmq 8039 8974 14197s 30s +11.63% 473.2X
NanoMQ 9025 9450 78678s 198s +4.71% 397.4X

CycloneDDS 22698 23155 9502s 3371s +2.01% 2.8X
libdoip 199 208 1423s 11s +4.52% 129.3X

AVERAGE +5.52% 250.6X

instances from each other but also proves to be resource-efficient
and lightweight.

4 EVALUATION
We have implemented SPFuzz on the most widely used generation-
based protocol fuzzer Peach (community version 3.0.202) [3]. The
Task Division module is implemented using the Python Document
Object Model API. It is utilized to parse the Data Model as a tree for
calculating the weights of elements and to interpret the state model
as a weighted graph for stateful path generation. In the Parallel
Executionmodule, we added a new task allocation strategy for Peach.
We utilize the networking 𝑖𝑝 tool to establish Netns and network
interfaces for each instance, thereby isolating the execution of the
allocated task within their respective spaces. For evaluation, we
answer the following three research questions:
RQ1 Is SPFuzz more efficient than Peach’s default parallel mode

in fuzzing protocols used in autonomous vehicles?
RQ2 Can SPFuzz effectively expose previously unknown vulner-

abilities in protocol implementations?
RQ3 How does SPFuzz’s performancewhen adapted to real-world

autonomous vehicles?
Subjects and Experiment Settings.We selected four in-vehicle

protocols: ZMTP, MQTT, DDS, and DoIP, which are widely used in
autonomous vehicles. We used their corresponding popular open-
source implementations [1, 2, 4, 21] as the under-test subjects. Mean-
while, we used Clang to insert trace-pc-guard instrumentation, a
feature in LLVM SanitizerCoverage [19], to collect branch coverage,
and enabled ASan and UBSan [17] to harden the under-test protocol
programs. We evaluate SPFuzz’s performance by comparing it with
Peach’s default parallel mode by setting four parallel instances. We
initialized SPFuzz and Peach with the same Pit configuration files
that specify the data and state models of each protocol.

Metrics.Weemployed threemetrics for our evaluation: (i) branch
coverage achieved, (ii) the duration SPFuzz requires to reach the
maximum branch coverage achieved by Peach’s parallel fuzzing
within 24 hours, and (iii) the number of unique bugs detected.
The first metric is commonly used to measure the effectiveness
of fuzzers, the second metric assesses the parallel fuzzing speed,
and the third metric indicates vulnerability detection capabilities.

4.1 Coverage Analysis
We ran each tool in parallel mode with four fuzzing instances for 24
hours and repeated each experiment five times to establish the sta-
tistical significance of the results. Detailed results are presented in
Figure 2, with overall improvements summarized in Table 1, where
𝑇𝑖𝑚𝑒P indicates the time that Peach used to achieve the maximum
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Figure 2: Average number of code branches achieved by SPFuzz and Peach’s default parallel mode within 24 hours.

branch coverage, 𝑇𝑖𝑚𝑒S indicates the time taken by SPFuzz to
achieve the same number of covered branches, and I𝑏𝑟𝑎𝑛𝑐ℎ indi-
cates the coverage improvements compared to Peach.

Figure 2 demonstrates that, in all of the four projects, SPFuzz
achieves the highest branch coverage. We can observe that both
fuzzers rapidly covered new code branches at the beginning of each
experiment. Then, Peach first slowed down, gradually bogged down,
and finally reached a saturation state where the improvement of
branch coverage turned extremely hard for it. SPFuzz kept a faster
speed of branch improvement. Due to libzmq’s diverse messag-
ing patterns, including REQ-RSP, SUB-PUB, and PIPELINE, which
result in more complex states, SPFuzz shows a slightly greater
coverage improvement of 11.63% on this program. Conversely, on
CycloneDDS, where service discovery is limited to two modes-
unicast and multicast, the overhead of state-sensitive computation
offsets the optimization benefits, and the enhancement achieved is
relatively minor. Specifically, compared to Peach, SPFuzz achieved
an average of 5.52% more branches within 24 hours.

The comparison between𝑇𝑖𝑚𝑒P and𝑇𝑖𝑚𝑒S reflects the fuzzing
speed and efficiency. Table 1 shows that, SPFuzz achieves the same
branch coverage (i.e., the final coverage of Peach) at a speed of
2.8X to 473.2X compared to the original Peach parallel mode. By
utilizing protocol state and data models to generate stateful paths
and allocate tasks based on them, SPFuzz avoids conflicts, balances
workload, and significantly accelerates parallel fuzzing.

4.2 Bug Detection Capability
Besides efficiently improving fuzzing speed, SPFuzz also exposed
six serious previously unknown vulnerabilities in the target pro-
tocol implementations, while Peach only detected three of them,
as shown in Table 2. These vulnerabilities have been confirmed,
potentially posing severe hazards. Five of them are assigned CVE
identifiers and fixed after a coordinated disclosure.

Table 2: Previously unknown bugs exposed by SPFuzz.

Subject Vulnerability CVE-ID Peach-P SPFuzz

NanoMQ heap-buffer-overflow-1 CVE-2023-34490 ✓ ✓

heap-buffer-overflow-2 CVE in Process ✗ ✓

heap-buffer-overflow-3 CVE-2023-34488 ✗ ✓

heap-use-after-free CVE-2023-34494 ✗ ✓

heap-buffer-overflow-4 CVE-2023-34492 ✓ ✓

libdoip stack-buffer-overflow CVE-2024-25188 ✓ ✓

Total 6 5 3/6 6/6

Case Study. Figure 3 illustrates a heap-buffer-overflow vulnera-
bility exposed by SPFuzz in NanoMQ. This bug occurs in function
conn_handler, where the implementation parses the packet fields
from the binary stream. The bug is triggered when out-of-bounds
accessing the pkt to parse the version field (line 9). The variable
pos is an iterator of the packet. The developers incorrectly vali-
dated the value of pos due to the incorrectly formulated verified
condition between it and the limit max (lines 2-8). Once the sum of
*pos and *str_len exceeds the size limit, the heap-buffer-overflow
bug occurs. Heap overflow vulnerabilities are critical and likely to
be leveraged to perform attacks like remote code execution.

1 int32_t conn_handler(uint8_t *pkt , conn_param *cparam , size_t
max) {

2 if (* str_len > 0) {
3 ...
4 *pos = (*pos) + (* str_len);
5 }
6 ...
7 rv = (len_of_str < 0 pos + 4 > max) ? PROTOCOL_ERROR : 0;
8 if (rv != 0) return rv;
9 cparam ->pro_ver = pkt[pos]; // Out -of-bounds memory access
10 pos++;
11 ...
12 }

Figure 3: The CVE-2023-34488 exposed by SPFuzz in NanoMQ.

4.3 Real Device Testing
We also adapted SPFuzz to real autonomous vehicles to evaluate its
performance in real-world scenarios. Bluetooth protocol is widely
used in autonomous vehicles for communication between the ECU
and the user’s devices. We adapted SPFuzz to fuzz the Bluetooth
protocol of the ECU used in autonomous vehicles and Figure 4
shows details of the real adaptation.

In the example, we started three fuzzing instances in parallel,
with each instance connected to a single transmitter to support
parallel fuzzing. The under-test ECU processes the fuzzed packets
received by the connected wireless terminal. The three parallel
fuzzing instances were initiated with the same protocol model but
were allocated different tasks based on different stateful paths under
SPFuzz framework, as reflected in the visualized workload curves
of these three instances.

We adapted SPFuzz to real ECUs from several vendors and trig-
gered a total of four vulnerabilities, as shown in Table 3. We tested
three Bluetooth protocols, AVRCP, AVDTP, and HFP, and all the
selected ECUs support all three Bluetooth protocols. Due to the
black-box nature of the ECUs, we cannot determine the root cause
of the vulnerabilities and only provide the symptoms. These critical
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Figure 4: Real adaptation of SPFuzz in fuzzing the Bluetooth
protocol of the ECU used in the autonomous vehicle.

vulnerabilities cause the ECU to crash or become unresponsive. We
have reported these vulnerabilities to the vendors.

Table 3: Vulnerabilities triggered by SPFuzz in real adaptation
on the ECU used in the autonomous vehicles.

Vendor Protocols under Test Vulnerabilities Description

NISSAN AVRCP, AVDTP, HFP Unable to disconnect phone audio connection
before automatic reboot.

DHT-PHEV AVRCP, AVDTP, HFP Unable to connect media audio.

VOLKSWAGEN AVRCP, AVDTP, HFP Center screen goes black and then reboots,
and any operation is unresponsive.

LEAPMOTOR AVRCP, AVDTP, HFP The center control does not display paired
connected devices.

5 RELATEDWORK
Protocol Fuzzing. Fuzzing, especially for the generation-based
fuzzing, has been widely adopted to test a range of protocol im-
plementations for automatic vulnerability detection [5, 6, 14, 15].
Existing research efforts mainly focus on optimizing the generation
algorithm of test packets. Bleem [16] introduces a packet-sequence-
oriented generation strategy that analyzes the output packet se-
quence for versatile feedback analysis and dynamically tracks the
state space for guided sequence generation. PAVFuzz [5] proposes a
dynamic approach to gradually learn field relationships to optimize
the generation of new packets. Snipuzz [12] utilizes a hierarchical
clustering strategy to analyze the server response and infers the
grammatical role of each packet byte for mutation optimization.
These approaches focus on optimizing the generation of individual
packets or packet sequences, which correspond to the nodes or
paths in the protocol state model. Our work divides parallel tasks
on the level of paths, which is orthogonal to existing algorithm op-
timizations and thus can be further combined with these works to
improve their fuzzing efficiency on multi-core computing resources.

Parallel Fuzzing. Increasing computing resources and paral-
lelizing the fuzzing tasks can also boost fuzzing efficiency. Exist-
ing research efforts mainly focus on optimizing mutation-based
fuzzers [10, 11, 13] by synchronizing information and scheduling
fuzzing directions. AFL [20], as well as its protocol-oriented variant
AFLNet [9], supports parallel fuzzing by synchronizing the seeds
but does not consider task allocation and conflicts. PAFL [8] pro-
poses a real-time fuzzing status synchronization to guide fuzzing
direction scheduling. AFLTeam [10] improves task partitioning

using a dynamic task assignment method. However, the synchro-
nization granularity of these works is mainly on the level of seeds,
which is coarse-grained in protocol fuzzing and may lead to redun-
dant fuzzing executions. Meanwhile, being unaware of the protocol
format, these works cannot provide well-formed packets to exercise
deep protocol logic. In contrast, our work focuses on parallelizing
generation-based fuzzers that are integrated with protocol specifi-
cation awareness. This awareness not only enables the production
of well-formed packets, thus enhancing effectiveness but also offers
a more detailed view of the protocol state space, thereby facilitating
conflict-minimized task division.

6 CONCLUSION
In this paper, we proposed SPFuzz, a stateful path based parallel
fuzzing framework for securing protocols used in autonomous vehi-
cles. SPFuzz leverages the protocol state model to generate stateful
paths and uses a weight-based task allocation strategy to balance
the workload among instances, thus facilitating conflict-free paral-
lel fuzzing and improving resource utilization. Experiments show
that SPFuzz achieved an average of 250.6X speedup and 5.52% more
code branches over Peach’s default parallel mode and found six se-
rious previously unknown vulnerabilities. Besides, the application
of SPFuzz to real ECUs used in autonomous vehicles showcases its
effectiveness in detecting vulnerabilities in real-world scenarios.
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