
DROIDFUZZ: Proprietary Driver Fuzzing for Embedded
Android Devices

Jianzhong Liu∗, Yuheng Shen∗, Yifei Chu∗, Qiang Zhang†, Heyuan Shi‡, Wanli Chang†, Yu Jiang∗�
∗School of Software, Tsinghua University †Hunan University ‡Central South University

Emails: ∗{liujz21, shenyh20, chuyf24}@mails.tsinghua.edu.cn, jiangyu198964@126.com
†zhangqiang9413@126.com, wanli.chang.rts@gmail.com ‡hey.shi@foxmail.com

Abstract—Embedded Android Devices have proliferated in many
security-critical embedded scenarios, requiring sufficient testing to root
out vulnerabilities. Due to Android’s architecture, which uses a Hardware
Abstraction Layer (HAL) for vendor-specific driver implementations,
traditional kernel testing techniques cannot detect such bugs within
the actual driver logic, which are commonly proprietary and vendor-
specific. In this paper, we propose DroidFuzz, an embedded Android
system fuzzer that targets such vendor-specific driver implementations
to find such bugs. Through leveraging pre-testing HAL driver probing,
kernel-user relational payload generation, and cross-boundary execution
state feedback, we effectively test the proprietary drivers in both the
kernel and the HAL layer. We implemented DroidFuzz and evaluated
its effectiveness on 7 embedded Android devices, and found 12 security-
critical previously unknown bugs, all of which have been confirmed by
the respective vendors.

Index Terms—Android testing, fuzz testing, embedded Linux, bug
detection

I. INTRODUCTION

The widespread adoption of Android in mobile devices has led
to its increasing presence in embedded systems, where it is used to
power a diverse range of applications, from set-top boxes and auto-
mated kiosks to automotive systems, medical devices, and industrial
control systems. As the complexity of these systems grows, so does
the attack surface, with device drivers emerging as a critical compo-
nent that interacts directly with hardware components and manages
their operations. With millions of lines of code in modern Android-
based embedded systems, ensuring the security and reliability of
device drivers has become a pressing concern.

Android’s architecture utilizes a Hardware Abstraction Layer
(HAL) to allow high-level applications to interface with hardware
devices and peripherals. HAL is situated between the Android frame-
work and the Linux kernel, where it provides a standardized interface
for accessing hardware resources, while also allowing hardware
vendors to implement proprietary and closed-source code that is
specific to their hardware platforms. As a result, much of the device
driver’s logic resides within the HAL layer, such that a significant
portion of the driver codebase remains opaque and inaccessible
to external scrutiny, making it challenging to detect and mitigate
potential security vulnerabilities or bugs within the HAL layer.

We use the example of CVE-2021-0673 [26] to demonstrate this
point. This vulnerability is a heap-buffer-overflow found in the audio
component of MediaTek chipset’s HAL, which at the time accounted
for 43% of Android devices shipped. When exploited, the bug results
in privilege escalation, allowing malicious attackers to gain access
to the entire system. Due to MediaTek’s HAL being closed source
and proprietary, applying public scrutiny to ensure the safety of
its components is difficult, hindering the bug discovery process,
consequently demanding more effective and systematic methods in
rooting out such vulnerabilities in Android proprietary drivers.

Software testing is a crucial step in ensuring the reliability, security,
and quality of modern software systems. Among various testing tech-

niques, fuzz testing (fuzzing) has emerged as an effective approach
for detecting bugs and vulnerabilities in software applications. It
mainly involves providing large amounts of randomized input to a
target program to trigger bugs within. In the context of operating
system kernels, fuzzing typically involves generating payloads that
mimic real-world workloads and injecting them into the kernel
through various interfaces such as system calls. Syzkaller [39] is a
state-of-the-art kernel fuzzer, and has found more than 5000 bugs in
the Linux kernel that have subsequently been confirmed and fixed.

However, despite the importance of driver security, existing re-
search and industry application of Android fuzzing has primarily
focused on fuzzing and testing applications and system frameworks,
leaving a significant gap in the state of the art for effective fuzzing
techniques tailored to detecting bugs in Android’s device drivers,
consisting of code in kernel drivers and HAL drivers. Established
methods for kernel fuzzing on Android mainly focuses on testing
the Linux kernel itself, whereas Android’s HAL layer, which is
in the userspace, cannot be directly reached using these methods.
Furthermore, effectively covering Android’s kernel drivers require
meaningful interaction with its corresponding HAL, which is difficult
to emulate using simply system call invocations.

This research aims to address this knowledge gap by exploring
new methodologies for adapting fuzzing techniques to the unique
characteristics of HAL drivers in embedded Android frameworks.
To do this, we need to solve the following challenges effectively.
1) First, in addition to system call interfaces, we need to model the
interfaces exposed by HAL to the Android runtime and libraries such
that we can generate effective invocations and payloads to the HAL’s
interfaces, which is proprietary and mostly undocumented, barring
traditional static analysis or LLM-based methods from achieving such
goals. 2) Second, we face the critical problem of effectively generat-
ing test cases that are meaningful to both Android’s kernel and HAL,
which are further complicated as HAL’s underlying functionalities
interact with the kernel through system calls, thus direct randomized
and static generation yields poor results. 3) Finally, as the kernel and
HAL run on different permission modes and memory spaces, and
provide differing execution state tracking, we cannot directly interpret
the execution state of both entities directly to identify interesting
inputs, as the semantics of these are vastly different.

To address the aforementioned challenges, we propose DROID-
FUZZ, a fuzzer targeting proprietary drivers in embedded Android
devices. In order to effectively conduct fuzz testing on both Android’s
kernel drivers and HAL layer, DROIDFUZZ introduces three ap-
proaches that individually address the challenges. First, DROIDFUZZ

provides a pre-testing HAL driver probing pass, where the HAL
is loaded, probed, to obtain its exposed interfaces, argument types,
and the weighting factors for each interface. Second, DROIDFUZZ

also integrates a kernel-user relational payload generation technique,
where it allows the fuzzer to produce test cases that synergistically



tests the kernel drivers and HAL components in an embedded
Android device. Finally, we design a cross-boundary execution state
feedback mechanism, where it coalesces the kernel’s code coverage
and HAL’s kernel execution behavior to analyze the state changes
in both components, and in turn assist in further input generation to
produce more meaningful input payloads.

We implemented DROIDFUZZ on 7 embedded Android devices
from well-known hardware vendors, including Xiaomi, Sunmi, Rasp-
berry Pi, etc., and evaluated its driver code coverage and bugs finding
capabilities on these devices. We further compared our performance
to that of Syzkaller to demonstrate the effectiveness in tapping into
embedded Android’s proprietary driver framework. Our results show
that DROIDFUZZ found 12 new bugs in these firmware, which have 7
from kernel drivers and 5 from the HAL layers, where Syzkaller was
only able to find 2, both of which are from the kernel. Furthermore,
through evaluating per-driver coverage in the kernel, DROIDFUZZ

achieves a 17% increase on average, demonstrating that interactions
with HAL can create meaningful workloads that further traverse the
states of the kernel drivers.

II. BACKGROUND AND RELATED WORK

A. Android on Embedded Devices

Embedded Android is the use of the Android operating system in
embedded devices, such as automated kiosks, set-top boxes, medical
devices, and industrial control systems [13]. These devices typically
use various peripherals such as displays, cameras, and sensors, which
often require many proprietary drivers to run [43].

Android in embedded systems allows developing complex ap-
plications, through its high-level APIs and abstractions that other
embedded OSs fail to offer [32]. As shown in Figure 1, an embedded
Android system consists of the Linux kernel, the Hardware Abstrac-
tion Layer (HAL), Android Runtime and Libraries, and the Android
Applications [12]. The Linux kernel [27] provides the underlying
system services such as scheduling, process isolation, and kernel
drivers, whereas Android’s framework provides the core APIs for
building applications. The HAL is sandwiched between the two,
providing a standardized interface for accessing hardware resources
and abstracting away low-level details [14].

B. Fuzz Testing

Fuzz testing, a.k.a. fuzzing, is a software testing technique used
to detect security vulnerabilities and bugs in applications [21]–[23].
It mainly involves feeding invalid, unexpected, or random input to
an target program and monitoring its behavior for crashes, hangs, or
other anomalous behavior. Coverage-guided mutation-based fuzzing
uses genetic algorithms to evaluate the effectiveness of test cases by
whether they trigger new execution states to preserve those for further
mutation into new test cases [16], [31]. Generation-based fuzzing
uses input format specifications to produce valid and well-formed
test cases. Fuzz testing is widely used in various domains, including
protocol security [19], program library security [2]–[4], [10], and
system vulnerability detection [5], [20].

Syzkaller is a state-of-the-art fuzzer that leverages both coverage-
guided mutation-based fuzzing and generation-based fuzzing tech-
niques through the use of kcov [35] and Syzlang [40]. Many works use
Syzkaller as a basis for improving fuzzing techniques. For instance,
Moonshine [28] aims to distill high-quality initial test cases for
Syzkaller. Horus [17] reduces data transfer overheads between the
fuzzer and manager by offloading RPCs to direct memory accesses.

kAFL [33] is another kernel fuzzer that maximizes throughput by
leveraging architectural features in Intel processors. HEALER [37] is

a kernel fuzzer targeted at system call relation learning to generate
more effective test cases.

There are also works that fuzz tests Android’s systems and
framework [36], [38]. Difuze [6] addresses the problem of kernel
driver fuzzing by introducing interface-aware fuzzing, which extracts
valid commands and associated data structures through static analysis.
Atlas [42] uses static analysis to deduce correct calling sequences
and parameters of native APIs in closed-source Android native
libraries and uses heuristics for optimizing the generated harness.
FuzzGen++ [29] generates fuzzing driver programs for OEM Android
libraries and applies automatic cutoff for low-quality driver programs.
In comparison, DROIDFUZZ addresses the problem of efficient pro-
prietary embedded Android driver fuzzing, which also requires the
joint fuzzing of both the Linux kernel and the HAL layer.

Works aimed towards fuzzing embedded systems [1], [15], [24],
[25], [41] are appearing. Tardis [34] adapts coverage-guided fuzzing
to embedded operating systems running on emulators. EmbSan [18]
addresses the issue of generalized porting of sanitizers to embedded
platforms. Gustave [7] transfigurates embedded OS fuzzing into
application fuzzing through input conversion.

III. MOTIVATION

Unlike traditional Android application or framework fuzzing, test-
ing proprietary drivers requires generating effective payloads that trig-
ger complex interactions between the kernel and HAL components.
To demonstrate the difficulties involved, we show how an embedded
Android application accesses the hardware in Figure 1 to demonstrate
the complex interactions between HAL drivers and kernel drivers. As
shown in the figure, Android’s HAL resides between the high-level
application frameworks and the low-level kernel, where it accesses
low-level interfaces through device files and abstract them into high-
level APIs. HAL drivers are also stateful and have vendor-specific
features, allowing proprietary drivers to be shipped without source
code, common practice for Android vendors.

Linux Kernel

Android HAL

Android Libraries

Photo Camera Home Screen Payment ...

Low Level System Calls

High Level API Invocation

Android Apps

ioctl()

read()

Camera Driver Display Driver WiFi Radio Driver

Camera HAL Graphics HAL WiFi HAL Sensors HAL

Light Driver

setColorMode()

write()

open()

close()

...

processCaptureResult()

Native Libraries JNI Android Runtime ...

sendAclData()createApIFace()

getHwVolume() ...

Audio Driver

Audio HAL Media HAL NFC HAL ...

USB Driver NFC Radio Driver ...

Fig. 1. Architecture of Android Relative to Apps Accessing Hardware

Fuzzing only kernel system calls or the HAL interfaces as a
library is not sufficient to trigger complex and meaningful interactions
between the HAL and kernel drivers, as profound bugs often require
correct states from both components to trigger. Therefore, our goal is
to develop a method that can fuzz proprietary drivers, by identifying
driver interfaces and interpreting their affinity with other APIs and
system calls, i.e. relations, generate meaningful sequences of API
invocations and system calls that direct fuzzing towards exploring
states in the proprietary drivers, and interpret execution feedback
from both the kernel and the HAL layer as coverage, ultimately
providing an effective way to detect bugs in embedded Android’s



DroidFuzz Host-Side Fuzzer DroidFuzz Device-Side AgentADB

Execution Broker HAL Executor

Native Executor

DroidFuzz Daemon Fuzzing Engine

spawns

Corpus

Fuzzing Repository

Coverage

updates

Relation Table

Relation
Graph

Relation
Refiner

Test Cases
Execution Queue

Execution Queue
Execution Queue

Executor Dispatcher

Syntax-based
Generator Mutator

Test Case Generation HAL Object
Constructor API Invocator

System Call
Argument

Constructor

Direct Call

Wrapper Call

HAL Execution Monitor

Kernel Coverage Collector

Execution State Bonder

Execution State Analysis
Execution
Results

Crash Responder

Test Case
Minimizer

Exception
Analysis

Fig. 2. Overview of DROIDFUZZ’s Architecture

drivers. Designing such methods poses several challenges that need
to be adequately addressed:

First, we need to determine the list of interfaces to test and the
argument syntax and semantics of each individual interface. While
previous work such as Difuze and Syzkaller have provided methods
and syntax for system calls, the interfaces on the HAL layer are
largely undocumented and lack available source code, making code-
level analysis difficult.

Second, the challenge lies in generating meaningful sequences
of HAL API invocations and system calls that effectively test both
sides synergistically. The kernel and HAL are tightly coupled, with
the HAL providing a standardized interface for accessing hardware
resources, while the kernel provides the underlying operating system
services. To detect profound bugs, we need to generate sequences of
API invocations and system calls that trigger these interactions and
exercise both components simultaneously.

The last challenge is interpreting the execution feedback as cov-
erage also poses significant challenges due to its cross-boundary
characteristics. The HAL layer is closed-source, making it difficult
to obtain precise information about the internal workings of this
component. Furthermore, the kernel’s behavior is deeply intertwined
with the HAL’s behavior, making it challenging to determine whether
a particular sequence of API invocations and system calls has
effectively exercised both components.

IV. DROIDFUZZ DESIGN

DROIDFUZZ is an operating system fuzzer that proposes solutions
to the aforementioned challenges. It takes inspiration from state-
of-the-art kernel fuzzers, including techniques such as system call
description-based generation and coverage-guided mutation. We show
the overall architecture diagram of DROIDFUZZ in Figure 2. The
major components of the fuzzing harness include the host-side
Daemon and Fuzzing Engine, and the device-side Execution Broker,
HAL Executor, and Native Executor, of which each component will
be briefly outlined in Section IV-A.

Our primary contributions are mainly covered in the following
three designs: 1) a pre-testing HAL driver probing pass to obtain
the HAL’s exposed interfaces and associated argument types, and
assess weights of each interface (Section IV-B); 2) a kernel-user
relational payload generation approach that allows the fuzzer produce
test cases that jointly tests the HAL drivers and corresponding kernel
drivers (Section IV-C); 3) a cross-boundary execution state feedback
mechanism that interprets the HAL’s execution behavior to merge
with the kernel’s code coverage for uniform analysis of new states,
and further produce more meaningful input payloads (Section IV-D).

A. Fuzzing Harness and Execution Agents

To facilitate proprietary driver fuzzing for embedded Android
devices, we compartmentalize each required functionality into sepa-
rate components, including DROIDFUZZ’s Daemon, Fuzzing Engines,
Execution Brokers, and Executors for HAL and Native system calls.

The root process of DROIDFUZZ is the Daemon, which mainly
coordinates synchronization between fuzzing processes and maintains
persistent data, such as the seed corpus, overall coverage statistics,
and relation table which records relations’ weights between interfaces
and system calls.

When the daemon finishes initialization, it spawns one instance of
a Fuzzing Engine for each device. The Fuzzing Engine produces
test cases for execution on the target device, and subsequently
analyzes feedback for each execution. Communication to the target
device leverages the Android Debug Bridge (ADB) [11]. Test cases
generated are sequences of HAL interface and Linux kernel system
call invocations in a Domain Specific Langauge (DSL) form. The
engine also receives execution state information from the device to
test against previous runs for any new behavior.

The aforementioned two components are run on the host machine,
while the following components are run on the device-under-test.

The Execution Broker is responsible for reliably communicating
test cases to run and execution results with its parent fuzzing engine.
It spawns a HAL executor and Native executor to run each HAL API
or system call invocation. It maintains an internal execution queue
that holds all test cases waiting to be executed, where each element
of a sequence is dispatched according to their type. The feedback is
then bonded to form a uniform feedback statistic, and is passed back
to the fuzzing engine for analysis.

The HAL and Native Executor uses the instantiated DSL and
constructs corresponding dependencies of objects as required. It then
invokes the relevant API or system call, after which its execution
feedback is collected and returned to the broker.

B. Pre-Testing HAL Driver Probing

Direct extraction of HAL interfaces is not easily achieved, as their
descriptions from proprietary HALs in release builds of the firmware
are not readily available. Instead, we take a poke and probe approach
to observe actual invocations of the HAL from Android applications
and extract a set of interfaces through observation of how the Android
framework communicates with the HAL.

Essentially, we use two components, a Poke application running
atop the Android framework, and a probe utility that runs natively, i.e.
without Android’s abstractions. The probe utility first uses Android



Prober Utility

Poke App

DroidFuzz Prober Android Framework

ServiceManager

Native Libraries Binder IPC

HAL Drivers

Android System

queries detects all

enumerate
HAL calls 

methods
eBPFHAL

invocation

extract interfaces

Fig. 3. Process of HAL Interface Probing

utilities (e.g. lshal and ServiceManager) to obtain a list of running ser-
vices and HALs on the device. Then, for each running HAL service,
it passes the relevant information to the Poke application, which then
requests the service’s interface through Android’s ServiceManager.
Next, the probe utility inserts eBPF code into the kernel that monitors
for accesses to Binder IPC from the Poke app. The Poke application
then conducts a short trial of all exposed interfaces by marshaling
the parameters and invoking the corresponding methods reflected by
ServiceManager, which is called into the native libraries, where it
is translated into Binder IPC calls, during which the interaction is
recorded from the eBPF hooks. The prober utility extracts the actual
IPC data between the HAL and the Poke App, and filters out relevant
interfaces and arguments. This process is depicted in Figure 3.

We also rank a HAL interface by calculating normalized oc-
currence through observing the number of instances that a certain
interface is triggered through invoking high-level Android APIs. This
gives the fuzzer more information on which interfaces to invoke
during testing.

C. Kernel-User Relational Payload Generation

Generating effective test cases that traverse deeply into the execu-
tion states of drivers in both the kernel and HAL requires the fuzzer to
understand the relations between HAL interfaces and kernel system
calls. To do this, we construct a relation graph Grel = (V,E), where
the set of vertices V = {(v, w)|v ∈ S∨v ∈ H,w ∈ (0, 1)}, of which
S is the set of individual system calls and H is the set of individual
HAL interfaces, and edges in E being directed and weighted. Each
vertex also carries a fixed weight w, which represents the ranking
of each individual system call or HAL interface, and corresponds
to the probability at which the system call or interface is chosen
during generation as the base invocation. The direction of edges in
E represents the perceived dependency between the kernel system
calls or HAL interfaces, whereas the weights represent the confidence
regarding the dependencies between the system calls or interfaces.

During initialization, we create the relation graph with the set
of vertices being filled with all system calls and HAL interfaces,
and their weights from either system call descriptions or evaluated
interface weights. The set of edges is initialized to an empty set, i.e.
E = ∅ . As we fuzz Android drivers, we detect new coverage and
update the edges and weights between the HAL APIs and kernel
system calls accordingly. When a new coverage is detected, we
minimize the call to the bare bones API and system calls, ensuring that
only the most essential invocations that trigger the same execution
behavior are exercised. The new relations are then saved into the
relation graph with the maximum normalized weights through the
following process. For each adjacent pair of calls a and b, where the
dependency is a → b, their weights are calculated using the formula:

w(a,b) = 1− Σ∀e=(x,b),x ̸=aw(x,b)/2 (1)

whereas weights for other edges with the same endpoint are halved.

Upon generating an input payload, we randomly pick a system call
or an interface as the base invocation, i.e. the API or system call that
acts as the basis for all depending invocations to form a sequence,
based on the weights of each vertex. We instantiate the call in the
DSL with parameters and objects based on the descriptions, using
a combination of syntax-based generation and historical payload
mutation. After this, we traverse the relation graph from the current
vertex to a dependent vertex with a probability based on the edge
weight. We may choose to stop altogether if the random value dictates
such. Then, we repeat the process given above. After ending such a
search, we iterate over all calls sequentially, find unresolved argument
or parameter values, and find producer calls, i.e. system calls or API
invocations that return the required argument values, instantiate the
call accordingly, and insert it into the call sequence as a prefix to
the current call. Finally, the generated call sequence, in the DSL
representation, is passed to the device for execution.

To encourage more diverse payloads and prevent our fuzzing
process from getting stuck in a local optimum, we periodically
reduce the weights of all learned relations by multiplying all edge
weights with a factor less than 1. This reduction process incentivizes
DROIDFUZZ to explore different interaction paths between the HAL
APIs and kernel system calls during test case generation, leading to
more comprehensive coverage of the Android drivers.

D. Cross-Boundary Execution State Feedback

To conduct effective fuzzing of Android drivers in both the kernel
and HAL components, we need to gather execution state feedback
that spans across these two boundaries. For the Linux kernel, we
can directly utilize debugging facilities such as kcov by recompiling
the kernel with relevant configurations enabled. However, due to
the closed-source nature of most vendor-specific HALs, we cannot
directly employ tools such as LLVM’s SanitizerCoverage [30] to
evaluate its code coverage.

Our observation is that, as HAL abstracts low-level details into
high-level interfaces, we can monitor the system call invocation
behavior of the HAL layer to identify new behavior. However, we
cannot directly interpret kernel code coverage, as it only records the
system calls and code blocks executed, but disregards the order in
which they are executed.

Thus, we use directional system call invocation coverage to reflect
the execution behavior of the HAL layer’s code. This requires that
the HAL executor inserts eBPF probes into the kernel at runtime
to detect system calls originating from the HAL. When the HAL
executor detects system calls originating from the HAL layer, we
record the specifics, including its number, critical position arguments
(e.g. request in ioctl()), and the order in which it appears.

To mimic the output of code coverage, we use a lookup table
compiled at initialization consisting of all possible system calls,
including specialized system calls, which divide system calls that
take generalized argument (e.g. ioctl()) according to their critical
arguments and assign them unique IDs. We arrange the coverage
into a sequence of system call IDs that correspond to the specific
system calls invoked by the HAL, and append it to the kernel
code coverage figures obtained from kcov. This joint-state feedback
represents a comprehensive view of the execution state of both
the kernel and HAL components, allowing us to understand how
these two components interact and identify potential issues in their
interaction. The analysis logic for both types of coverage remain the
same, allowing for simplified processing while gaining comprehen-
sive understandings of how the kernel and HAL components interact.



V. IMPLEMENTATION AND EVALUATION

We implemented DROIDFUZZ using 25930 lines of Rust and Go
for the daemon, fuzzing engine, and broker components, 1694 lines
of C for the executor components and prober utility, and 503 lines
of Java for the Poke App. Our implementation borrowed system
call descriptions and native executor components from Syzkaller to
execute test payloads intended for the kernel. To demonstrate our
applicability to real-world embedded Android devices, we adapted
DROIDFUZZ to test 7 devices, which encompass off-the-shelf systems
and development boards, all from renowned hardware vendors in
the mobile and embedded space using processors commonly used
in embedded Android devices. The list of the devices are shown in
Table I, with their vendors, CPU architecture, the AOSP version and
kernel version of their firmware specified.

TABLE I
LIST OF EMBEDDED ANDROID DEVICES TESTED

ID Device Vendor Arch. AOSP Kernel

A1 Phone Dev Board Xiaomi aarch64 15 6.6
A2 Tablet Dev Board Xiaomi aarch64 15 6.6
B Pi 5 Raspberry Pi aarch64 15 6.6
C1 Commercial Tablet Sunmi aarch64 13 5.15
C2 Cashier Kiosk Sunmi aarch64 13 5.15
D LubanCat 5 EmbedFire aarch64 13 5.10
E UP Core Plus AAEON amd64 13 5.10

To evaluate the effectiveness of our approach, we ran DROIDFUZZ

on these embedded devices to assess its ability to find real-world
bugs on the 7 embedded devices, and its effectiveness in covering
driver code compared to state-of-the-art fuzzing approaches. We also
analyzed the individual contributions of pre-testing HAL driver prob-
ing, kernel-user relational payload generation, and cross-boundary
execution state feedback by performing ablation testing that removes
each component for a controlled experiment.

A. Evaluation Settings

All experiments are conducted on a host server with dual Intel
Xeon Silver 4120R CPUs, 192GiB of RAM, and running amd64
Debian Linux 12.8. We use one device per experiment to conduct
testing. The devices used in this experiment are running rooted
firmware with their kernels recompiled with kcov and KASAN [9]
enabled. DROIDFUZZ is configured to reboot the target devices
upon encountering any bugs during testing, including kernel panics,
assertions, and HAL errors. The versions of Syzkaller and Difuze
used are commits fb88827 and 3290997. Each experiment is repeated
for 10 times to eliminate statistical errors. We use the Mann-Whitney
U Test to assess the existence of statistical significance, where data
groups that do not exhibit such significance will be labelled explicitly.

B. Bug Detection

To evaluate DROIDFUZZ’s bug finding abilities, we ran DROID-
FUZZ on each target embedded device for 144 hours. All bugs
triggered were initially minimized, deduplicated, and reproduced.
Manual effort was also involved in analyzing the bugs to detect
duplicates and recover corrupted log messages. Over the course of
testing, DROIDFUZZ found 12 new bugs in the devices’ respective
firmwares, both in the kernel and HAL layer. All bugs have been
confirmed by the respective vendors, where bugs fixes are underway
at the time of writing. Some bugs have redacted information in their
Bug info column as relevant details are currently embargoed.

The list of bugs are shown in Table II. As shown in the table,
the new bugs found by DROIDFUZZ are found in both the kernel
and HAL components, demonstrating that DROIDFUZZ is capable
of effectively finding bugs in vendor-specific HAL drivers itself.
Specifically, 3 bugs triggered crashes in the HAL layer, whereas
the other 9 bugs were found in the kernel, showing the versatility
of DROIDFUZZ, being capable of jointly fuzzing drivers in both
the system kernel and HAL layer. As expected, the bugs triggered
in the HAL are all architectural exceptions such as segmentation
faults, demonstrating the effectiveness of the test cases generated.
Furthermore, we can predict that this bug list is not conclusive, as
some bugs triggered in the HAL layer were not perceivable without
the use of sanitizers or other bug detection tools.

C. Kernel Coverage

To understand why DROIDFUZZ was able to find new bugs,
we conduct an experiment that uses code coverage of the entire
kernel and specific targeted kernel drivers as a proxy to identify the
covered states of the drivers in the Android system. We then compare
DROIDFUZZ’s statistics to that of Syzkaller and Difuze. Syzkaller is
also able to generate test cases for kernel drivers, and thus we can
perceive the additional code coverage that jointly fuzzing the HAL
layer brings. Difuze is an interface fuzzer that specifically generates
ioctl() calls to device drivers, thus allowing us to compare

1) Comparison with Syzkaller: We compared DROIDFUZZ’s ker-
nel code coverage on all tested devices with that of Syzkaller’s to
understand the effect on kernel driver execution state exploration
through joint testing the HAL layer. We run each experiment for
48 hours, and take the average coverage at each timestamp.

0 6 12 18 24 30 36 42 48
0

0.5

1

1.5

2

2.5

3
·105

Time [h]

B
ra

nc
h

C
ov

er
ag

e

DROIDFUZZ

Syzkaller

(a) Device A1

0 6 12 18 24 30 36 42 48
0

0.5

1

1.5

2

2.5

3
·105

Time [h]

B
ra

nc
h

C
ov

er
ag

e
DROIDFUZZ

Syzkaller

(b) Device A2

0 6 12 18 24 30 36 42 48
0

0.5

1

1.5

2

2.5

3
·105

Time [h]

B
ra

nc
h

C
ov

er
ag

e

DROIDFUZZ

Syzkaller

(c) Device B

0 6 12 18 24 30 36 42 48
0

0.5

1

1.5

2

2.5

3
·105

Time [h]

B
ra

nc
h

C
ov

er
ag

e

DROIDFUZZ

Syzkaller

(d) Device C1

Fig. 4. Coverage comparison between DROIDFUZZ, Syzkaller, on select tested
devices over 48 hours.

We show the relevant coverage for devices A1, A2, B, and C
in Figure 4, whereas the the coverage statistics for devices D, E,
and F follow this pattern and are omitted. As shown in the plot,
DROIDFUZZ achieves better coverage than Syzkaller consistently,
demonstrating the effectiveness of our approach towards testing An-
droid’s kernel and HAL layers together in triggering more execution
states, particularly in the kernel, which also shows that system call
fuzzers such as Syzkaller still fall short of providing realistic and
meaningful payloads to the kernel drivers.



TABLE II
LIST OF ALL NEW BUGS FOUND BY DROIDFUZZ.

№ Device Bug Info Bug Type Component

1 A1: Xiaomi Phone Dev Board WARNING in rt1711 i2c probe Logic Error Kernel Driver
2 A1: Xiaomi Phone Dev Board Native crash in Graphics HAL (redacted) Memory Related Bug HAL
3 A1: Xiaomi Phone Dev Board BUG: looking up invalid subclass: NUM Logic Error Kernel Subsystem
4 A1: Xiaomi Phone Dev Board WARNING in tcpc (redacted) Logic Error Kernel Driver
5 A2: Xiaomi Tablet Dev Board Infinite Loop in driver (redacted) Logic Error Kernel Driver
6 A2: Xiaomi Tablet Dev Board Native crash in Media HAL (redacted) Memory Related Bug HAL
7 A2: Xiaomi Tablet Dev Board KASAN: invalid-access in hci read supported codecs Memory Related Bug Kernel Driver
8 B: Raspberry Pi 5 WARNING in l2cap send disconn req Logic Error Kernel Subsystem
9 C1: Sunmi Commercial Tablet Native crash in Camera HAL (redacted) Memory Related Bug HAL

10 C2: Sunmi Cashier Kiosk WARNING in rate control rate init Logic Error Kernel Driver
11 D: LubanCat 5 KASAN: slab-use-after-free Read in bt accept unlink Memory Related Bug Kernel Driver
12 E: AAEON UP Core Plus WARNING in v4l querycap Logic Error Kernel Driver

Thus, we conclude that jointly testing both the kernel and the
HAL layer results in more state transitions within the kernel itself,
increasing the probability of discovering new bugs.

2) Comparison with Difuze: Difuze utilizes a fuzzer called Man-
goFuzz (built upon Peach [8]), which feeds ioctl() interface invo-
cations based on extracted interfacesto the kernel. As it is based
on components designed for legacy kernels targeting select chipsets
manufacturers, we only adapted it to test devices A1 and A2, where
it succeeded in extracting 285 and 232 driver interfaces from the
firmware of devices A1 and A2. To understand the effect and quality
of HAL’s ioctl() calls reflected upon kernel code coverage, we derive
another variant DROIDFUZZ-D which limits the executor and HAL
to only calling ioctl()s, whereas other requests will be blocked.

0 6 12 18 24 30 36 42 48
0

0.5

1

1.5

2

2.5

3
·105

Time [h]

B
ra

nc
h

C
ov

er
ag

e

DROIDFUZZ

DROIDFUZZ-D
Syzkaller

(a) Device A1

0 6 12 18 24 30 36 42 48
0

0.5

1

1.5

2

2.5

3
·105

Time [h]

B
ra

nc
h

C
ov

er
ag

e

DROIDFUZZ

DROIDFUZZ-D
Syzkaller

(b) Device A2

Fig. 5. Coverage comparison between DROIDFUZZ, Difuze, and DROID-
FUZZ-D for over 48 hours.

The results are shown in Figure 5. As shown in the plot, DROID-
FUZZ’s coverage far outpaces that of Difuze’s, which is expected due
to the increase in interfaces tested. A more relevant comparison is
DROIDFUZZ-D and Difuze, which shows that DROIDFUZZ-D leads
Difuze’s coverage by 34%. Our analysis shows that while the invoked
ioctl() remains the same, sending the requests through fuzzing HAL
produces significantly improved results compared to specification-
based generation techniques.

Thus, we conclude that jointly testing the kernel and HAL pro-
duced additional benefits in that the HAL traps into the kernel with
more realistic and meaningful payloads, giving the fuzzer an edge in
discovering new states.

D. Ablation Tests

We also wish to understand the effect of each design component
on the overall performance of DROIDFUZZ, and thus introduce two
variations of DROIDFUZZ, DROIDFUZZ-NoRel, and DROIDFUZZ-
NoHCov, which have modifications that disable kernel-user relational
payload generation thus solely rely on randomized dependency gener-
ation, and removes HAL system call directional coverage from cross-
boundary execution state feedback, respectively. We still use kernel

coverage as a proxy to convey a statistic on the scope of execution
states traversed. We use Syzkaller’s statistics as a baseline to better
understand the effects. The overall results are shown in Table III.

TABLE III
COVERAGE STATISTICS FOR ABLATION TESTS (48H)

Device DROIDFUZZ DF-NoRel DF-NoHCov Syzkaller

A1 289402 269281 274021 264920
A2 273930 250192 259402 247958
B 245930 210583 225126 220094
C1 269593 246930 240194 230664
C2 279305 239382 259492 220950
D 250295 237492 232910 220175
E 298593 247294 284629 257320

1) Effect of Kernel-User Relational Payload Generation: We find
that the statistics for removing relational generation produces cover-
age consistently less than DROIDFUZZ. This is due to the generated
test cases contain less meaningful and potentially incorrect usage of
the system calls and APIs, and thus cannot cover as much code in
the kernel. However, it still manages to frequently cover more code
than Syzkaller, which indicates that HAL’s use of the system call
interface can produce more valid semantics.

2) Effect of Cross-Boundary Execution State Feedback: Removing
cross-state feedback also results in lower coverage statistics than
DROIDFUZZ. The reason is that the fuzzer can only refine the
relations based on kernel code coverage alone, and thus produces
less-than-optimal test cases. Even so, it still consistently performs
better than Syzkaller, as joint fuzzing of both the kernel and HAL
can trigger more execution states within these components.

Therefore, we conclude that both relational payload generation and
joint state feedback contributes to DROIDFUZZ’s overall effective-
ness, allowing DROIDFUZZ generate more high-quality test cases by
refining relations between system calls and HAL interfaces.

VI. CONCLUSION

DROIDFUZZ leverages pre-testing HAL driver probing, kernel-
user relational payload generation, and cross-boundary execution
state feedback to jointly test drivers in both Android’s HAL layer
and kernel. Our evaluations show that DROIDFUZZ finds 12 bugs
in 7 embedded Android devices, and covers execution states more
effectively than the state of the art.

VII. ACKNOWLEDGMENTS

This research is sponsored in part by the National Key Research
and Development Project (No. 2022YFB3104000), and NSFC Pro-
gram (No. U2441238, 62021002).



REFERENCES

[1] Richard Barry et al. Freertos, 2003. https://www.freertos.org/.
[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik

Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, page 2329–2344, New York, NY, USA, 2017. Association for
Computing Machinery.

[3] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Principled
Search. In 2018 IEEE Symposium on Security and Privacy (SP), pages
711–725, 2018.

[4] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: Fuzzing deeply
nested branches. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, page 499–513,
New York, NY, USA, 2019. Association for Computing Machinery.

[5] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil Cha. NTFUZZ:
Enabling type-aware kernel fuzzing on windows with static binary
analysis. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 1973–1989, 2021.

[6] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: In-
terface aware fuzzing for kernel drivers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, page 2123–2138, New York, NY, USA, 2017. Association for
Computing Machinery.

[7] Stéphane Duverger and Anaı̈s Gantet. Gustave: Fuzz it like it’s app.
DMU Cyber Week, 2021.

[8] Michael Eddington. Peach fuzzer. https://peachtech.gitlab.io/
peach-fuzzer-community/.

[9] Google. Kernel address sanitizer. https://www.kernel.org/doc/html/latest/
dev-tools/kasan.html.

[10] Emre Güler, Philipp Görz, Elia Geretto, Andrea Jemmett, Sebastian
Österlund, Herbert Bos, Cristiano Giuffrida, and Thorsten Holz. Cu-
pid: Automatic fuzzer selection for collaborative fuzzing. In Annual
Computer Security Applications Conference, ACSAC ’20, page 360–372,
New York, NY, USA, 2020. Association for Computing Machinery.

[11] Google Inc. Android debug bridge (adb). https://developer.android.com/
tools/adb.

[12] Google Inc. Architecture overview. https://source.android.com/docs/
core/architecture.

[13] Google Inc. Embedded. https://developer.android.com/reference/
androidx/room/Embedded.

[14] Google Inc. Hardware abstraction layer (hal) overview. https://source.
android.com/docs/core/architecture/hal.

[15] Silicon Lab. Ucos. https://www.silabs.com/developers/micrium.
[16] lcamtuf. American fuzzy lop, 2013. https://lcamtuf.coredump.cx/afl/.
[17] Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang. Horus:

Accelerating kernel fuzzing through efficient host-vm memory access
procedures. ACM Trans. Softw. Eng. Methodol., 33(1), November 2023.

[18] Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, Heyuan Shi, and
Yu Jiang. Effectively sanitizing embedded operating systems. In
Proceedings of the 61st ACM/IEEE Design Automation Conference,
DAC ’24, New York, NY, USA, 2024. Association for Computing
Machinery.

[19] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang, Ting
Chen, Abhik Roychoudhury, and Jiaguang Sun. Bleem: packet sequence
oriented fuzzing for protocol implementations. In Proceedings of the
32nd USENIX Conference on Security Symposium, SEC ’23, USA, 2023.
USENIX Association.

[20] Dominik Maier and Fabian Toepfer. Bsod: Binary-only scalable fuzzing
of device drivers. In Proceedings of the 24th International Symposium
on Research in Attacks, Intrusions and Defenses, RAID ’21, page 48–61,
New York, NY, USA, 2021. Association for Computing Machinery.

[21] Sanoop Mallissery and Yu-Sung Wu. Demystify the fuzzing methods:
A comprehensive survey. ACM Comput. Surv., 56(3), October 2023.

[22] Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. Fuzzing: Art,
science, and engineering. arXiv preprint arXiv:1812.00140, 2018.

[23] Lucas McDonald, Muhammad Ijaz Ul Haq, and Ashley Barkworth.
Survey of software fuzzing techniques.

[24] Anas Nashif. Zephyr is a new generation, scalable, optimized, secure
RTOS, 2016. https://github.com/zephyrproject-rtos/zephyr.

[25] Henry Neugass, G Espin, Hidefume Nunoe, Ralph Thomas, and David
Wilner. Vxworks: an interactive development environment and real-time
kernel for gmicro. In Eighth TRON Project Symposium, pages 196–197.
IEEE Computer Society, 1991.

[26] National Institute of Standards and Technology. National vulnera-
bility database: Cve-2021-0673 detail. https://nvd.nist.gov/vuln/detail/
CVE-2021-0673.

[27] The Linux Kernel Organization. The linux kernel archives. https://kernel.
org.

[28] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: Optimiz-
ing OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX
Security Symposium (USENIX Security 18), pages 729–743, Baltimore,
MD, August 2018. USENIX Association.

[29] Shiyan Peng, Yuan Zhang, Jiarun Dai, Yue Gu, Zhuoxiang Shen,
Jingcheng Liu, Lin Wang, Yong Chen, Yu Qin, Lei Ai, Xianfeng Lu,
and Min Yang. Applying fuzz driver generation to native c/c++ libraries
of oem android framework: Obstacles and solutions. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’24, page 2035–2040, New York, NY, USA, 2024.
Association for Computing Machinery.

[30] LLVM Project. Llvm sanitizercoverage. https://clang.llvm.org/docs/
SanitizerCoverage.htmll.

[31] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote,
David Warren, Gustavo Grieco, and David Brumley. Optimizing Seed
Selection for Fuzzing. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 861–875, San Diego, CA, August 2014. USENIX
Association.

[32] Teresa Reidt. Several reasons for choosing embedded android. https:
//emteria.com/learn/embedded-operating-system.

[33] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels. In 26th USENIX Security Symposium (USENIX
Security 17), pages 167–182, Vancouver, BC, August 2017. USENIX
Association.

[34] Yuheng Shen, Yiru Xu, Hao Sun, Jianzhong Liu, Zichen Xu, Aiguo
Cui, Heyuan Shi, and Yu Jiang. Tardis: Coverage-guided embedded
operating system fuzzing. Trans. Comp.-Aided Des. Integ. Cir. Sys.,
41(11):4563–4574, nov 2022.

[35] SimonKagstrom. Kcov. https://github.com/SimonKagstrom/kcov.
[36] Ting Su, Yichen Yan, Jue Wang, Jingling Sun, Yiheng Xiong, Geguang

Pu, Ke Wang, and Zhendong Su. Fully automated functional fuzzing of
android apps for detecting non-crashing logic bugs. Proc. ACM Program.
Lang., 5(OOPSLA), October 2021.

[37] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting
Chen, and Aiguo Cui. HEALER: Relation Learning Guided Kernel
Fuzzing, page 344–358. Association for Computing Machinery, New
York, NY, USA, 2021.

[38] Jingling Sun, Ting Su, Jiayi Jiang, Jue Wang, Geguang Pu, and Zhendong
Su. Property-based fuzzing for finding data manipulation errors in
android apps. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023, page 1088–1100, New York, NY, USA,
2023. Association for Computing Machinery.

[39] Dmitry Vyukov and Andrey Konovalov. Syzkaller: an unsuper-
vised coverage-guided kernel fuzzer, 2015. https://github.com/google/
syzkaller.

[40] Dmitry Vyukov and Andrey Konovalov. Syzlang: System Call Descrip-
tion Language, 2015. https://github.com/google/syzkaller/blob/master/
docs/syscall descriptions syntax.md.

[41] Bernard Xiong and Man Jianting. RT-Thread is an open source IoT
operating system., 2007. https://github.com/RT-Thread/rt-thread.

[42] Hao Xiong, Qinming Dai, Rui Chang, Mingran Qiu, Renxiang Wang,
Wenbo Shen, and Yajin Zhou. Atlas: Automating cross-language fuzzing
on android closed-source libraries. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2024, page 350–362, New York, NY, USA, 2024. Association
for Computing Machinery.

[43] Karim Yaghmour. Embedded android: Porting, extending, and customiz-
ing. O’Reilly, 2017.

https://www.freertos.org/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://source.android.com/docs/core/architecture
https://source.android.com/docs/core/architecture
https://developer.android.com/reference/androidx/room/Embedded
https://developer.android.com/reference/androidx/room/Embedded
https://source.android.com/docs/core/architecture/hal
https://source.android.com/docs/core/architecture/hal
https://www.silabs.com/developers/micrium
https://lcamtuf.coredump.cx/afl/
https://github.com/zephyrproject-rtos/zephyr
https://nvd.nist.gov/vuln/detail/CVE-2021-0673
https://nvd.nist.gov/vuln/detail/CVE-2021-0673
https://kernel.org
https://kernel.org
https://clang.llvm.org/docs/SanitizerCoverage.htmll
https://clang.llvm.org/docs/SanitizerCoverage.htmll
https://emteria.com/learn/embedded-operating-system
https://emteria.com/learn/embedded-operating-system
https://github.com/SimonKagstrom/kcov
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/RT-Thread/rt-thread

	Introduction
	Background and Related Work
	Android on Embedded Devices
	Fuzz Testing

	Motivation
	DroidFuzz Design
	Fuzzing Harness and Execution Agents
	Pre-Testing HAL Driver Probing
	Kernel-User Relational Payload Generation
	Cross-Boundary Execution State Feedback

	Implementation and Evaluation
	Evaluation Settings
	Bug Detection
	Kernel Coverage
	Comparison with Syzkaller
	Comparison with Difuze

	Ablation Tests
	Effect of Kernel-User Relational Payload Generation
	Effect of Cross-Boundary Execution State Feedback


	Conclusion
	Acknowledgments
	References

